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It is generally accepted in the information system (IS) field that IS quality is highly
dependent on the decisions made early in the development life cycle. The construction of
conceptual data models is often an important task of this early development. Therefore,
improving the quality of conceptual data models will be a major step towards the quality
improvement of the IS development. Several quality frameworks for conceptual data
models have been proposed, but most of them lack valid quantitative measures in order
to evaluate the quality of conceptual data models in an objective way.

In this article we will define measures for the structural complexity (internal at-
tribute} of entity relationship diagrams (ERD) and use them for predicting their main-
tainability (external attribute). We will theoretically validate the proposed metrics fol-
lowing Briand et al’s framework with the goal of demonstrating the properties that
characterise each metric. We will also show how it is possible to predict each of the
maintainability sub-characteristics using a prediction model generated using a novel
method for induction of fuzzy rules.

Keywords: Information systems quality; entity relationship diagram maintainability;
structural complexity metrics; maintainability prediction; theoretical validation; empir-
ical validation; fuzzy classification and regression tree.

1. Introduction

In a marketplace of highly competitive products, the importance of delivering qual-
ity is no longer an advantage, but a necessary factor for success. It is generally
accepted within the information system (IS) field that the quality of IS is highly
dependent on decisions made early in the development life cycle. Generally, prob-
lems in the artifacts produced in the initial stages of IS development spread to
the artifacts produced in later stages, where they are much more costly to identify
and correct [1]. Conceptual data models are often an important task of this early
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development stage. Moreover, conceptual data models lay the foundation of all later
design work and also determine the information that can be represented by an IS
[2]. Therefore, the quality of conceptual data models has a significant impact on the
quality of the IS which is ultimately implemented (3], and an even greater impact
if we take into account the size and complexity of current IS. Therefore, it is time
to consider conceptual data model quality as a main goal to pursue, instead of a
subproduct of information modelling or database creation processes.

There are different kinds of conceptual data models, such as traditional (some
variants of entity-relationship models} and ohject-oriented models (UML and OMT
diagrams). In this article we will focus on entity relationship diagrams (ERD) [4, 5]
because in today’s IS design world they are still the preferred method of conceptual
modelling [6]. _

In practice, evaluation of the quality of conceptual data models takes place in an
ad hoc manner, if at all. There are no generally accepted guidelines for evaluating
the quality of conceptual data models, and little agreement even among experts as
to what makes a “good” conceptual data model [7]. Wand and Weber (8] argue that
for IS design to go from an art to a science, there is a need to find ways of formally
evaluating designs rather than relying solely on the judgement of the designer. The
truth is that the notion of quality in conceptual modelling is poorly understood and,
in most literature only ‘bread and butter’ lists of properties have been provided [9-
11]. Only a few comprehensive and structured quality evaluation frameworks have
been proposed which attempt to address quality in conceptual modelling in a much
more systematic way [12-15]. The reader who is interested in a deeper study of these
frameworks, may find a summary in [16]. Although these frameworks contribute to
our understanding of quality issues of conceptual modeiling, so far they are on a high
level of abstraction. Both Lindland et al. {12] and Krogstie et al.[13], underline the
necessity of enriching their frameworks with quantitative and objective measures,
to reduce subjectivity and bias in the assessment of the quality of conceptual data
models. The early availability of metrics allows designers to measure the quality of
conceptual data models in order to assess (and if necessary to improve) the quality
of the IS from the early phases of their life cycle.

Within the field of software measurement, a plethora of metrics have been pro-
posed for measuring software products, processes and resources [17-19]. Unfortu-
nately, almost all the metrics proposed until now have focused on program char-
acteristics or on detailed design, without paying special attention to conceptual
data models. Some exceptions known to us are the metrics proposed by Eick [20],
Gray et al. [21], Kesh [22] and Moody [23]. Although all of these metrics proposals
are a good starting point to think about quality in conceptual modelling on a nu-
meric scale, most of them are subjective, lack empirical and theoretical validation
and some of them are not useful in practice. Thus, there is a need for metrics and
quality models that can be applied in the early stages of IS design, and we are
particularly concerned with those applied to ERDs, to ensure that those designs
have favourable internal properties that will lead to the development of quality IS.
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We will define metrics for measuring ERD structural complexity (internal
attribute), with the goal of using these early metrics to predict ERD maintainabil-
ity (external attribute), which indirectly influences the IS maintainability. These
metrics can also act as a guide to improve ERDs and explore alternatives.

This paper is organised as follows: In Sec. 2, we define a set of metrics for mea-
suring ERD structural complexity following the GQM paradigm [24-25|. In Sec. 3,
we present the theoretical validation of the proposed metrics following the frame-
work proposed by Briand et al [26] with the goal of demonstrating the properties
that characterise each metric. In Sec. 4, we describe a controlled experiment, carried
out in order to ascertain the relationships that exist between the proposed metrics
and maintainability, and also to obtain a prediction model for ERD maintainabil-
ity from the metric values. Lastly, in Sec. 5, we draw our conclusions, and present
future trends in the field of measurement of conceptual models.

2. Definition of Measures for ERD using GQM

The Goal/Question/Metric(GQM) paradigm [24-25 provides a framework for de-
riving measures from measurement goals. The measurement goal should be clearly
connected with an industrial goal, so the measurement program responds to a soft-
ware organization’s needs. In GQM each metric is deduced using a top-down ap-
proach covering three levels: at conceptual level goals are defined, at operational
level questions are defined, and at the quantitative level metrics are derived. The
GQM approach results in a set of metrics whose utility is clearly justified [27].

. 2.1, Goal

In our case the goal is to analyse ERD with the purpose of evaiuaﬁng maintainability
from the viewpoint of the datubase designer or IS design in software development
companies/departments. The goal is therefore defined in terms of the entities shown
in Fig. 1.

Object of study: ERD

Purpose: Evaluating

Quality focus: Maintainability

Viewpoint: Database designer/IS designer

Environment: Software development
companies/departments

Fig. 1. Goal of ERD metrics.
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2.1.1. Object of study

ERDs are the most popular conceptual data models, providing a graphical notation
that allows us to represent any Universe of Discourse in a simple and easy way to
understand.

2.1.2. Quality focus

The ISO/IEC 9126 [28] defines software quality as composed of six external charac-
teristics of interest, namely, functionality, reliability, efficiency, usability, maintain-
ability and portability. In turn, each of these quality characteristics is refined into
sub-characteristics. The focus of this work is on ERD maintainability, because main-
tainability has been and continues to be one of the pressing challenges facing any
software development department. To our knowledge, not all of the maintainability
sub-characteristics proposed in that standard are suitable for ERDs. Therefare, we
distinguish six sub-characteristics for maintainability:

~— Understandability: the ease with which the conceptual data model can be
understood.

— Simplicity: means that the conceptual data model contains the minimum num-
ber of constructions possible.

— Analysability: the capability of the conceptual data model to be diagnosed for
deficiencies or for parts to be modified to be identified.

— Modifiability: the capability of the conceptual data model to enable a specified
modification to be implemented.

— Stability: the capability of the conceptual data model to avoid uexpected effects
from modifications. '

— Testability: the capability of the conceptual data model to enable modifications
to be validated.

External quality attributes as maintainability sub-characteristics can only be mea-
sured late in the IS life cycle. We therefore need to identify early quality indicators
based, for example, on the structural complexity (internal attribute) of ERD. Thus,
our purpose is to define metrics to quantify ERD structural complexity and after-
wards to ascertain how each of these metrics is related to each of the maintainability
sub-characteristics.

2.2, Questions

As ERD maintainability is influenced by structural complexity, which, in turn,
depends on elements that compose an ERD (relationships, entities, and attributes),
three important questions arise:

— How is ERD maintainability affected by the structural complexity caused by
the number of entities?
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— How is ERD maintainability affected by the structural complexity caused by
the number of attributes?

— Tow is ERD maintainability affected by the structural complexity caused by
the number of relationships?

2.3. Metric definition

Reasoning with expert database designers and trying to respond to the questions
brought up by the GQM method, we have identified several metrics which deal with
the structural complexity of an ERD. All the metrics can be applied at diagram
level, and are classified in the following categories: Entity metrics, Attribute metrics
and Relationship metrics.

2.3.1. Entity metrics

— NE METRIC. We define the Number of Entities metric as the number of entities
within an ERD.

2.3.2. Attribute metrics

— NA METRIC. The Number of Attributes metric is defined as the total number of
attributes within an ERD, considering both entity and relationship attributes.
This figure includes simple attributes, derived attributes, composite attributes
and also multivalued attributes, each of which take the value 1 when calculating
the metric.

— NDA METRIC. An ERD is minimal when every aspect of the requirements
appears once in the diagram, i.e., an ERD is minimal if it does not have any
redundancies. One of the sources of redundancy in ERDs is the existence of
derived attributes. An attribute is derived when its value can be calculated or
deduced from the values of other attributes. The Number of Derived Attributes
metric is defined as the total number of derived attributes within an ERD.

— NCA METRIC. The Number of Composite Attributes metric is defined as the
total number of composite attributes within an ERD.

— NMVA METRIC. The Number of Multivalued Attributes metric is defined as
the total number of multivalued attributes within an ERD.

2.3.3. Relationship metrics

— NR METRIC. The Number of Relationships metric is defined as the total number
of relationships within an ERD, considering only common relationships.

— NM:NR METRIC. The Number of M:N Relationships metric is defined as the
total number of M:N relationships within an ERD.

— N1:NR METRIC. The Number of 1:N Relationships metric is defined as the total
rumber of 1:N relationships (including also 1:1 relationships) within an ERD.
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NN-AryR METRIC. The Number of N-ary Relationships metric is defined as
the total number of N-ary relationships (not binary) within an ERD.
NBiNaARYR METRIC. The Number of Binary Relationships metric is defined as
the total number of binary relationships within an ERD.

NIS_AR METRIC. The Number of IS_A Relationships metric is defined as the to-
tal number of IS_A relationships (generalisation/specialisation) within an ERD.
In this case, we consider one relationship for each child-parent pair within the
IS_A relationship.

NREFR METRIC. The Number of Reflexive Relationships metric is defined as
the total number of reflexive relationships within an ERD.

NRR METRIC. Ancther source of redundancy in an ERD are redundant re-
lationships. We define the Redundant Relationship metric as the number of

-relationships that are redundant in an ERD.

Figure 2 summarises the application of the GQM paradigm for deriving metrics for
ERD structural complexity evaluation.

These are open-ended metrics [29], i.e., they are not restricted in an interval.

Close-ended metrics (percentage metrics) could also be useful, such as the following:
NRR/NR; NDA/NA; NM:NR/NR; N1:NR/NR, NBinaryR/NR, NN-AryR/NR,
etc.

EVALUATING
Goal ERD MAINTAINABILITY
How is ERD How is ERD How is ERD
maintainability maintainability maintainability
affected by the affected by the affected by the
Questions siructural strictural complexity structural complexity
complexity caused caused by the caused by the number
by the number of abubdance of of refationships?
entities? attributes?
: Entity Metrics Attributes Metrics Relationship Metrics
Metrics s AR Sl ———E——.NR
NDA NI:NR
NCA *NM:NR
NMVA ~NBinaryR
*NN-AryR
«NIS_AR
*NRefR
*NRR

Fig. 2.

ERD metrics obtained by the application of the GQM paradigm.

i
i
i
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3. Theoretical Validation

The main goal of theoretical validation is to check if the intuitive or formal idea
of the attribute being measured is reflected in the measurement. This is done by
analysing the theoretical requisites which must be satisfied when measuring. Essen-
tially, it is based on the analysis of the properties of the 'attribute that we wish to
measure.

Even though several attempts have been made to egtablish how to carry out
theoretical validation in software measurement, there is ncot yet a standard, accepted
way of theoretically validating a measure. As Van den Berg and Van den Broek [30]
said “a standard on theoretical validation issues in software measurement is urgently
required”.

Work on theoretical validation has followed two paths which, rather than alter-
native are complementary.

(1) Measurement theory-based approaches [31-33]: check for a specific measure if
the empirical relations between the elements of the real world established by
the attribute being measured, are respected when measuring the attributes.

{2) Property-based approaches [26, 34]. Aim to formalize the empirical properties
that a generic attribute of software or a system (eg. the complexity or size) must
satisfy in order for it to be used in the analysis of any measurement proposed
for that attribute.

In the next subsection we present the property-based approach proposed by Briand
et al. [26], and later improved by Morasca et al. {35!, with the goal of establishing
which mathematical properties must be achieved by the imetrics in accordance with
the internal software attribute they intend to measure: size, complexity, cohesion,
coupling, length.

3.1. Introduction to Briand et al.’s framework

The Briand et ol’s framework [26] provides a set of mathematical properties that
characterise and formalise several important measureriler_lt concepts: size, length,
complexity, cohesion and coupling. This framework is based on a graph-theoretic
model of a software artifact, which is seen as a set of élements linked by relation-
ships. The different kinds of metrics, and the propertiés which identify each one,
are applicable to modules and modular systems. ‘

We describe the basic concepts of this framework and the set of properties for
the metrics of five software attributes of interest.

A System is defined as a pair (E, R), where E is the set of elements of S, and R
is a binary relation among the elements of E(R C E.E). From this point, we say
that m is a module of S if and only if Ep, € E, Rm € Em X En, and Ry € R. One
extension of Briand et al. (1996) was made by Morasch et al. (1997) which allows
not only binary relations.
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The elements of a module are connected with elements of other modules of the
system with input and output relations. So, the following two sets are defined:

Input R{(m) 4: {{er,e2) € Rjeac By Aey1 € E— En}
|

Output R(m) &= {{e1,e0) € R/e1 € By Aea € E — Ep}
|

MS = (E, R, M) is a Mddular System if § = (F, R) is a system according to the
previous definition and M ij a collection of modules of § with no common elements
(they are disjoint).

IR is the union of all thejrelations which relate the entities of a concrete module
(intramodule relationship). According to this definition, R-IR is the set of relations
among elements of different modules (intermodule relationship).

Table 1 lists the propertiies that the metrics of size, length, complexity, cohesion
and coupling must fuifil. |

It is important to recal.‘ that coupling and cohesion are only defined in the
context of modular systems, whereas size, length and complexity are defined for all
systerms. |

These properties can be {1sed to guide the search for new product measures and
help to avoid future confusl“j:i, often encountered in the literature, about which
properties product measures should or should not have. Studying measure prop-
erties is important in order to provide discipline and rigour in the search for new

product measures.

3.2. Theoretical validation of the proposed metrics

NA METRIC. For our purpoée and accordingly with Briand et al’s framework, we
consider that entities and reiationships are system modules, the attributes are the
elements and relationships e represented by the relation “belong to”, which reflect
that each attribute beIong:io an entity or to a relationship. We will demonstrate
that NA fulfils all of the aﬂioms that characterise size metrics (see Table 1), as

follows:

. Nonnegativity. One ERD)can or cannot have attributes, i.e., it could happen
that NA = 0 or NA > 0, but never NA < 0.

. Null value. If we have no 'pttributes NA =0.

. Module odditivity. If we :Fonsider that an ERD is composed of modules, i.e.,
entities and relationships; the number of attributes of an ERD will always be
the sum of the number of attributes of all of its entities and relationships, because
each attribute of an ERDiis an attribute of either an entity or relationship.

VRSOt SR RVEITAT Y

i}



Metric-Based Approach for Predicting Conceptual D,

nta Models Mainteinability 711

Table 1. Properties that characterize measurelnent concepts.

Size

NONNEGATIVITY. The size of a system is nonnegati

ve.

NULL VALUE. The size of a system is null if it has go elements.

MODULE ADDITIVITY. The size of a system is equal
its modules such that any element of the system is
or the other.

to the sum of the sizes of two of
an element of either one module

Length

NONNEGATIVITY. The length of a system is nonneglative.

NULL VALUE. The length of a system is null if has y

ho elements.

NONINCREASING MONGTONICITY FOR CONNECTED ¢OMPONENTS. Let S be a system

and m be a module of S such that m is represented

graph representing S. Adding relationships betweer

the length of S.

NONDECREASING MONOTONICITY FOR NON-CONNEC]
tem and m) and mgz be two modules of S such thg
two separate connected components of the graph
ships from elements of m; to elements of m, does
DisyoinT MODULES. The length of a system made g
equal to the maximum of the lengths of m; and m

by a connected component of the
n elements of S does not increase

ED COMPONENTS. Let S be a sys-
it m; and ma are represented by
representing 5. Adding relation-
not decrease the length of 5.

f two disjoint modules my, mg is
D .

Complexity

NONNEGATIVITY. The complexity of a system is no
NULL VALUE. The complexity of a system is null if

nnegative.
it has no relations.

SyMMETRY. The complexity of a system does not depend on the convention chosen

to represent the relationships between its elements

MopuLe MoNOTONICITY. The complexity of a systpm is no less than the sum of the
complexities of any two of its modules with no relationships in common.

D1sjoINT MoDuLe ApbpITIviTY. The complexity of a system composed of two disjoint
modules is equal to the sum of the complexities of the two modules.

Cohesion

NONNEGATIVITY AND NORMALIZATION. The cohesi

of a [module m = (Em, Rm) of

a modular system MS = (E, R, M) | modular system MS = (E, R, M)] belongs to
a specified interval: [Cohesion{m) € [0, Max] | Cohgsion(M S) € [0, Max]]

NULL VALUE. If there is no intramodule relationsh
module(s), then the module (system} ecohesion is n
[Rm = @ => Cohesion{m) = 0} IR = @ = Cohesig
MownoTtonicITy. Adding intramodule relationships
ular system| cohesion.

ip among the elements of a (all}
ull,

n(MS) =0}

does not decrease [module | mod-

CoHgsIvE MODULES. The cohesion of a module obtained by putting together two un-
related modules is not greater than the maximum fcohesion of two original modules.

When referring to module coupling, we will use the word coupling to denote ei-
ther inbound or outbound coupling, and OuterR{m) to denote either InputR(m) or
OQutputR{m).
NONNEGATIVITY. The coupling of a module [m = (Ep, Rm) of a2 modular system
M8 ={E, R, M) | modular system MS = (K, R, M)]] is nonnegative:

[Coupling(m) € 0 > Coupling(MS) = 0]
NuLL vALUE. The coupling of a [module m = [[Fm, Bm) of a modular system
- Imodular system MS = (E,R, M)} is null if [QuterR(m) | R — IR] is empty:
[OuterR(m) = & = Coupling(m) = 0| R— IR = $ = Coupling(M5) = 0]
MonoToniciTY, Adding intermodule relationships|does not decrease coupling.
MERGING OF MoODULES. The coupling of a [module | modular system] obtained by
merging two modules is not greater than the |sum of the couplings of two original
modules | coupling of the modular system], since the two modules may have common
intermodule relationships.
Disjomet MopuLe ApbiTiviTy. The coupling of 4 [module | modular system)] ob-
tained by merging two unrelated modules is equal to the [sum of the coupling of two
original modules | coupling of the original modular system].

Coupling
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Folliowing a similar reasoning as that used for the NA metric, it can be proved

that the metrics NCA, NM

NE METRIC. For our |
work, we consider that an
relationships (relations). A

IVA and NDA are also size metrics.
burpose and in accordance with Briand et al’s frame-

ERD is a system composed of entities (elements) and
module is composed of a subset of the ERD entities

and ERD relationships. We will demonstrate that NE fulfils ali of the axioms that

characterise size metrics (s

. Nonnegativity. The num
that NE can never be ng
Null value. If there are 1
. Module odditivity. 1f we
common entities, the ny
the number of entities o

NR MeTRIC. For our purp
consider that an ERD isas

(relations). A module is cof

tionships. We will demonst

complexity metrics (see Tab

. Nonnegativity. It is obvi

tionships. Then, NR, > Q.
o relationships within an ERD ther NR = (.

. Null value. If there are n
. Symmetry. The number ¢
to represent the relations
. Module monotonicity, Ad
that: being m; and maq
comimon, the value of NH
. Disjoint module additivit
such that ERD = m U7
in the mny and my modul
are disjoint modules.

Following an analogous reas
that the metrics NM:NR, N1
are also complexity metrics.

Also, we have put the pr
ascertain each scale type. Fol
of the proposed open-ended
are in absolute scale, which
and statistical analyses that

ce table 1}, as follows:

ber of entities in an ERD is always greater than zero, so
apative,

16 entities NE=(0.

consider that an ERD is composed of modules with no
imber of entities of an ERD will be always the sum of
[ its modules.

se and accordingly with Briand et al’s framework, we
ystem composed of entities (elements) and relationships
mposed of a subset of the ERD entities and ERD rela-
rate that NR fulfils all of the axioms that characterise
le 1}, as follows:

us that there is always a null or positive value of rela-

f relationships does not depend on the convention used
hips.
cording to the definition of this property, it is obvious

any two modules of the ERD with no relationships in
2

(ERD} > NR(m1) + NR(mg).
. Effectively let 723 and mg be any two disjoint modules

mg. Let NR; and NRs be the number of relationships

es. Obviously: NR = NR; + NRs, because m; and my

oning as that used for the NR metric, it can be proved
:NR, NBinaryR, NN-AryR, NIS_AR, NRefR and NRR,

pposed meirics under theoretical validation in order to
lowing Zuse's formal measurement framework [31] most
metrics are in ratio scale and the close-ended metrics
has a relevant importance in the types of operations
can be applied to the measurement values.




Metric-Based Approach for Predicting Conceptual Data Models Maintainability 713

4. Empirical Validation

As in other aspects of Software Engineering, proposing techniques and metries is not
enough, it is also necessary to carry out empirical valid4tions to assure their utility
in practice. Empirical validation is critical to the success of software measurement
118, 36-38].

Taking into account some suggestions provided in | 3$40 about how to perform
empirical studies in Software Engmeermg, we carried gut a controlled experlment

pursuing the following goals:
!

(1) ascertaining if any relationship exists between the metrics (NE, NA, NR,
NM:NR, Ni:NR, NN-aryR, NBinaryR and NIS_ARJ) and each of the maintain-
ability sub-characteristics: understandability, simplicity, analysability, modifia-
bility, stability, and testability.

(2) establishing a prediction model for each of the maintainability sub-
characteristics from metric values obtained at the éarly phases of IS life cycle,

We only consider the metrics (NE;NA,NR,NM:NR,N1 'I\LR JNN-aryR, NBinaryR and
NIS_AR) because the others take the value zero in most of the ERDs selected for
the experiment.

In the remainder of this section, we show the experinjental design, how we collect
the experimental data, the technique used to analyse the empirical data, the results
of the experiment and the threats to validity. !

4.1. Subjects

The experimental subjects used in this study were 9 professors and 7 students

enrolled in the final-year Computer Science course in t]pe Department of Computer

Science at the University of Castilla-La Mancha in Spaln. All the professors belong

to the Software Engineering field and they have on average five years of experience

in the design of ERDs. By the time the experiment, was done all the students
had taken two courses on Software Engineering and ¢ne course on Databases, in

which they learnt, in depth, how to build ERDs. Morepver, subjects were given an

intensive training session before the experiment took Q:lace.

4.2. Erperimentol materials and tasks

The subjects were given twenty-four ERDs [41, 42] of the different universes of
discourse, but general enough to be easily understood by each of the subjects. The
complexity of the selected ERDs is different, because e selected them taking into
account that they cover a wide range of the metric valies. Each diagram has a test
enclosed which includes the description of maintainability sub-characteristics, such
as: understandability, simplicity, analysability, modifiability, stability and testabil-
ity, Each subject had to rate each sub-characteristic usibg a scale consisting of seven
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linguistic labels. For example, for understandability we proposed the following lin-
guistic labels: ‘

Extremely | Very difficult | A bit difficult| Neither Quite easy |Very easy to| Extremely
difficult to [to understand [tp understand| difficult |[to understand| understand | easy to

understand ' nor easy to understand
understand

We associate the numbers 1 to 7 to each linguistic label: The worst case takes
the value seven (extremely difficult to understand), and the best case takes the
value one (extremely easy to understand).

We also gave to the subjects a guide containing a detailed explanation about
the ER notation used in the diagrams.

We allowed one week 4o do the experiment, i.e., each subject had to carry out
the test alone, and could use unlimited time to solve it. After completion of the
tasks the subjects were asked to complete a debriefing questionnaire. This ques-
tionnaire included (i) personal details and experience, (i) opinions on the influence
of different components of ERD, such as: entities, relationships, attributes, etc. on
their maintainability.

4.3. Ezperimental design and data colliection

The INDEPENDENT VARIABLE is the structural complexity of the ERDs, measured
using the metrics proposed in Sec. 2.

The DEPENDENT VARIABLES are those of the maintainability sub-characteristics:
understandability, simplicity, analysability, modifiability, stability and testability,
measured according to the subject’s rating.

We collected all the tedts, controlling until they were complete. As all of them
were complete and the subjects had, at ieast, medium experience in building ERDs
{this fact was corroborated analysing the responses of the debriefing questionnaire)
we consider their subjective evaluation to be reliable.

4.4. Data analysis techhique and results

Due to the nature of the spftware development process and products, one cannot
expect to use in Software Engineering the same measurement data analysis tech-
niques that are used in “exact” sciences, e.g., physics, chemistry, nor obtain the
same degree of precision and accuracy [43]. Statistic and nwmerical machine learn-
ing techniques are very dependent on the data set and the models and are not
qualitative [44]. So, we need a machiue learning technique that will allow us to
build prediction models with two characteristics: they must be highly qualitative
and more straightforward and intelligible to human beings.

Following this idea, Ebert [45] and Ebert and Baisch [46] proposed a fuzzy clas-
sification using a set of software quality metric values by unsupervised learning

|
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process. But our proposal is different because we followed a supervised learning
method, which is a novel data analysis approach based on a rule system with lin-
guistic variables [47]. This approach, as a method of supervised learning, provides
models that allow us to discover the most relevant conceptual relationships between
the data we are analysing, where the accuracy of those models is sacrificed in favour
of its simplicity and ease of understanding. In order to obtain these models we will
use a method for induction of fuzzy rule systems, which is introduced in the next
subsection.

4.4.1, Method for induction of fuzzy rule systems

This method for induction of fuzzy rule systems is a generalisation of the classical
regression approach. In order to explain this method, first we make some introduc-
tory comments.

Let § = {s1,...,5n} De a set of data, which are defined by the value given by
a set of variables X = {X',..., X4 Y}, s; = (z},...,2%4). Let us suppose there
is a function F which is only known at the points of S so that F(s;) = ¢;. The
objective of regression, which is defined classically as a parametric function F”, is
to minimise the distance between the sample output values y; and the predicted
value F'(s;). ‘

The regression problem differs from the classification problem in that the output
variable can be continuous, where as in classification this is strictly categorical. From
this perspective, classification can be thought to be a subcategory of regression.
Recursive partition methods for classification problems such as 1D3 decision tree
have been applied, as a regression method by restrictions, in the CART program
[48], developed in the statistical research community.

The CART program (classification and regression tree) is based on building a
tree structure where the regions are defined by possible answers to a set of questions
raised about the variables that define the problem. This approach creates a set of
disjoint regions SR = {ry,...,rp} of the global domain of the problem. These
partitions are obtained according to the kind of questions and answers that we
have formulated. Our method generalises the kind of partitions obtained, using the
method proposed in [49, 50} based on the fuzzy set theory [51]. In the fuzzy set
theory the membership of an element x (which belongs to a domain X) to a fuzzy
set A, is in the interval [0,1]. If A(z) is the membership function, A(x) = 0 means
that x is not a member of 4, and A(r) = 1 means that z is a full member of
A. A(z) can also take other values between the interval [0,1], which graduate the
membership of = to the fuzzy set A. We use Linares el al’s idea [49] in order to
define a fuzzy classification and regression tree (FCART} which produce a fuzzy
rule system that represent our prediction model.

Hereafter, we will explain how to obtain the rules. Let Ay be a fuzzy set defined
over the set S in the node T, such that A4:8 — [0, 1]. In the root node this fuzzy
set 18 Aroot: S — 1. We define the output value at node T by the membership value




716 M. Piattini, M. Genero & L. Jiménez

of each point s;, Ar(s:) and the output value in this point y;.
n
Ar(s:)™ * 1y,
F”(T) — =1

Z AT (8i)m
i=1

where AT(x) is defined by mini_; A%(z7), and A%(z?) is a membership of a fuzzy
set defined over j-metric domain. The value of m is a real number greater than 1
which weights the contribution of the membership value,

The estimated error is defined by

STFT) i) * Arfsi)™
Err(T) = & =
Z Ar(s;)™
i=1

Now, our problem is how to create the set of questions to split the node T. The
questions were formulated for each variable, obtaining a binary fuzzy partition for
each one. We supposed a binary fuzzy partition for the fuzzy set of node T' by the
fuzzy set AJ. of variable j, this is p?r = {B(z),C(z)}, when A}.(z) = B(z) + C(z).
This partition creates two new nodes and two new fuzzy sets for them

Ar,(s;) = min(Ap(s;), B(z]))
Ar,(s;) = min(Ap(s:), C(zl})

IF variable; 1S A7, THEN ...

ELSE IF variable’ IS Ay, THEN ...

Following the CART program, we defined the proportion for B(z) and C(z) in
relation to fuzzy set Al as

The quality of the partition can be estimated through the equation
C(T,p") = Erxr{T1) « P(Ty) + Err(T) » P(T%)

where p; is the fuzzy partition of variable j.

We will select the p* which minimises the value of C(T,p;). This approach to
create the questions gives rise to a hierarchical fuzzy partition for each variable.
This split process raises relevant metrics to define the model. The partition process
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stops when a stop criterion is raised. In this case we look for larger estimated error.
So that stop criterion can be :

ERROR = max Err(T) < ¢
TeT

where T is the set of leaf nodes of the tree, and each one represents a region for our
solution. The output value y for a input value s; is

Y Ar(s)™ * F(T)
F’(S) — TeT

S Ar(s)"

TeT

4.4.2, Results of the experiment

First, we establish a fuzzy rule system for understandability, a maintainability
sub-characteristic. We use a learning set with X = {set of our metrics} and
Y = {the values of understandability obtained in the experiment}. We have ob-
tained 384 values (24 ERDs and 16 subjects) of this unknown function:

F{ NE,NA NRNM:NR,N1:NR,NN-AryR,NBinaryR,NIS_AR) = Understandability.

By the induction method described above we have obtained a prediction model
composed of fuzzy rules, generated from the fuzzy tree obtained [49, 50].

A fuzzy rule is formed by the antecedent part (left part of the rule) and the con-
sequent part (right part of the rule} to reflect causal-effect relation. The antecedent
part is formed by aggregation of fuzzy statements as “X is A", where X is a metric
value and A is a fuzzy set over metric domain.

In this example we have used a trapezoidal function for fuzzy sets, which are
defined by four numbers. The fuzzy set [a, b, ¢, d] has the following membership:

(0 T < a
T—a
A e<z<b
A(:c,a,,b,c,d): 1 b<zr<e
d—
d—i c<x<d
\0 1‘2d

Table 2 shows the set of fuzzy rules that represents the understandability fuzzy
model (they were generated using an automatic tool) where [MIN MAX] represent
the whole domain of every metric. The rows (—14 represent the 15 rules obtained
by the induction approach. For example rule 12 can be read as “IF NA is in the
fuzzy set [19.0,29.0,35.0,44.0] and NI:NR is in the fuzzy set [3.0,5.0 MAX, MAX]
end NBinaryR is in the fuzzy set [6.0,8.0,8.0,10.0] THEN understandability (Y) is
3.87”, This rule gives a 0.12 error and has a data coverage percentage of 8.91%.
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As our goal is to define a rule system with linguistic variables we now briefly
introduce the concept of linguistic variables. A linguistic variable [47] is a tuple
(X,T(X),V,G, M) where X is the variable name (in our case metric names}, T(X)
is the label set, V is the domain in which the variables are defined, M is a semantic
rule that associates each label to a fuzzy set defined over the domain V. With our
method once the fuzzy sets are inducted, we will label each fuzzy set (see Table 3)
to establish the linguistic variables we will use.

Table 4 shows the rules specified in Table 2 using linguistic variables where
EVERYTHING is the compiete domain of the metric.

Table 2. Understandability fuzzy model.

RULE NA NI:NR NBinaryR Y [ERROR|COV%
0 |[MINMIN,MAX,MAX]|[1.0,2.0,3.0,5.0] [6.0,8.0,MAX MAX] [2.60] 0.08 | 4.62
1 |IMIN,MIN;MAX,MAX]|[0.0,1.0,1.0,2.0) IMIN,MIN,MAX,MAX]|3.02| 0.17 | 889
2 |[MIN,MIN,MAXMAX]([1.0,2.0,3.0,5.0] [MIN,MIN,3.0,5.0] 2.04| 013 [ 1028
3 |[MIN,MIN,MAX,MAX]|[MIN,MIN,0.0,1.0] {{6.0,8.0,MAX,MAX] [2.86| 0.01 | 0.00
4 |[MIN,MIN,19.0,29.0} |[3.0,5.0,MAX ,MAX]|[6.0,8.0,8.0,10.0] 368 0.03 | 219
5 |[MIN,MIN, MAX,MAX}{[MIN,MIN,0.0,1.0] ([3.0,5.0,6.0,8.0| 2.92 006 | 428
6  |MIN,MIN,MAX,MAX]|[MIN,MIN,0.0,1.0] |[[MIN,MIN,3.0,5.0 2.77| 018 |11.74
7 |[MIN,MIN,MAX,MAX]|[3.0,5.0, MAX MAX]|[10.0,11.0MAX,MAX] l4.75| 0.06 | 4.39
8 [[MIN,MIN,MAX,MAX] [3.0,5.0,MAX,MAX]|[8.0,10.0,10.0,11.0] 3.43| 011 | 5.53
9 [[MIN,MIN,19.0,29.0] ([3.0,5.0,MAX MAX]{[MIN,MIN,5.0,8.0] 2.35| 007 | 550
10 ![19.0,29.0, MAX,MAX] [[3.0,5.0, MAX,MAX]|[MIN,MIN,6.0,5.0] 3.28) 011 | 9.92
11 |[35.0,44.0,MAX,MAX] {[3.0,5.0,MAX ,MAX]|[6.0,8.0,8.0,10.0] 3.26] 007 | 4.66
12 |[19.0,29.0,35.0,44.0]  |{3.0,5.0, MAX,MAX]|[6.0,8.0,8.0,10.0] 3.87| 012 | 891
13 |[MIN,MIN,19.0,29.0]  [[1.0,2.0,3.0,5.0) [3.0,5.0,6.0,8.0] 2.42| 0.1 | 10.84°
14 |[19.0,29.0, MAX,MAX] [[1.0,2.0,3.0,5.0] [3.0,5.0,6.0,8.0] 2.81] 008 | 7.51
Where: the column RULE represents each rule number; the columns NA, N1:NR,
NBinary R are the fuzzy sets associated with each metric name; the column Y is the
output or the consequent of the rules, it means the understandability; the column
ERROR is the error produced when the rule is generated and the column COVY is the
data coverage percentage of each rule, taking into account the sample data.

Tabie 3. Labels of fuzzy sets.

NA NI:NR NBINARY R
Fuzzy Set Label Fuzzy Set Label Fuzzy Set Label
{MIN,MIN,19.0,29.0] LOW |[MIN,MIN,0.0,1.0] (VERY LOW|[MIN,MIN,3.0,50] |VERY LOW
(19.0,29.0,35.0,44.0) |MEDIUM|(0.0,1.0,1.0,2.0) LOW [3.0,5.0,6.0,8.0] LOW
[35.0,44.0,MAX, MAX]| HIGH [{1.0,2.0.3.0,5.0] MEDIUM |{6.0,8.0,8.0,10.0] MEDIUM
[3.0,5.0,MAX MAX]| HIGH [[8.0,10.0,MAX,MAX)] HIGH
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Table 4. Understandability linguistic fuzzy model.

RULE NA NL:NR NBinaryR Y ! ERROR | COV%
0 EVERYTHING MEDIUM MEDIUM or HIGH | 2.60 0.08 4.62

1 EVERYTHING LOw EVERYTHING 3.02 0.17 8.89

2 EVERYTHING MEDIUM VERY_LOW 2.04 0.13 10.28

3 EVERYTHING VERY_ LOW | MEDIUM or HIGH | 2.86 0.01 0.00

4 LOW HIGH MEDIUM 3.66 0.03 2.19

5] EVERYTHING VERY_LOW LOW 2.92 0.06 4.28

6 EVERYTHING VERY_LOW VERY_LOW 2.77 .18 11.74

7 EVERYTHING HIGH HIGH 4.75 0.06 4.39

8 EVERYTHING HIGH MEDIUM or HIGH | 3.43 0.11 5.53

9 LOW HIGH LOW or VERY_LOW | 2.35 0.07 5.59
10 MEDIUM or HIGH HIGH LOW or VERY_LOW ; 3.28 0.11 9.92
11 HIGH HIGH MEDIUM 3.26 0.07 4.66
12 MEDIUM HIGH MEDIUM 3.87 0.12 8.91
.13 LOW MEDIUM LOW 2.42 0.11 10.84
| 14 MEDIUM or HIGH | MEDIUM LOW 2.81 0.08 7.51

‘Where: the column RULE represents each rule number; the columns NA, N1:NR,
NBinaryR are the linguistic variables associated with each metric name; the column
Y is the output or the consequent of the rules, it means the understandability; the col-
umn ERROR is the error produced when the rule is generated and the column COV%
is the data coverage percentage taking into account the sample data.

We can read the rule 12 as “IF NA is MEDIUM and NI1:NR is HIGH and
NBinaryR is MEDIUM THEN understandability is 3.87, i.e. Neither difficult nor
easy to understand”. :

This fuzzy rule system represents a prediction model for the understandability
that is highly natural and closer to the human mind, therefore it is in accordance
with our goals, presented in the beginning of this section.

Now, we will show an example of understandability prediction using the pro-
posed model, presented above, For example, suppose that we want to answer the
following question: “What 4s the value of understandability, if we know that NA
value is 20, NI:NR wvalue is 4 and NBinaryR valuve is 42" This question, can be
answered by inference following Table 5.

Using approximate reasoning [52] and with a simplified consequent, detailed in
Table 5, we obtain the result shown in Fig. 3.

The value of understandability is 5.138/2.1 = 2.45. This value is 55% very easy
to understand and 45% a bit easy to understand (see Fig. 3).

We also want to highlight anctiuer very important characteristic of our method
which is the identification of relevant metrics. According to our sample and
analysing understandability, the relevant metrics are NA, N1:NR and NBinary R.
because only these metrics change the EVERYTHING value obtained by induction
methods.
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Extremely Very ditficult | A bit difficult Neither A biteasy | Very easy | Extremely
ditficult to | to understand | to understand | difficult nor te to easy to
understand easy o understand ; understand | urderstand
i understand
>( 0.55
»i
[oas_
0 |
7 6 5 4 3 2 1
| 245
Fig. 3. Inference of a new understandability value.
Table 5. Inference of a new value of understandabifity.
RULE NA(20) N1:NR(4) NBinaryR(4) Y MIN MIN*Y
0 1 0.5 0 2.60 0 0
1 0 1 S 3.02 0 0
2 1. 0.5 0.5 2.04 0.5 1.02
3 1 1 0 2.86 0 0
4 0.9 0.5 3.66 0 0
5 1 1 2.92 0 0
6 1 0.5 2.77 0 0
7 1 0.5 0 4.75 0 ]
8 1 0.5 0 3.43 4] 0
g 0.9 0.5 1 2.35 0.5 1.175
10 0.1 0.5 1 3.28 0.1 0.328
11 0 0.5 0 3.26 0 0
12 0.1 0.5 0 3.87 0 0
13 0.9 0.5 0.5 2.42 0.5 1.21
14 0.9 0.5 0.5 2.81 0.5 1.405
SUM 2.1 5.138
Where: the column RULE is the rule number; the colimns NA(20), 1:NR(4),
BINARY R(4) represent the degree of membership of each; the column Y represents
the output or the consequent of the rules, it means the understandability; the column
MIN represents the minimum of the degree of membership of the antecedents and the
column MIN*Y represents the contribution of each rule to the final solution 5.138. This
value is obtained by making a weighted average of the output (understandability) of each
rule with its degree of membership.

For the sake of brevity we do not show how to obtain the prediction model
for the other maintainability sub-characteristics, but they can be built in a sim-
ilar way to the understandability fuzzy model shown in Table 3. In Appendix A
we show the fuzzy models (see Tables 6, 7, 8, 9 and 10} for the rest of the main-
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tainability sub-characteristics. Analysing the fuzzy models for each maintainability
sub-characteristic we can deduce that:

— Of all the metrics used, the only ones that are relevant for determining the to-
tality of the maintainability sub-characteristics are NA, N1:NR and NBinaryR.
This fact is deduced because these are the metrics that most frequently appear
in each of the fuzzy models representing each maintainability sub-characteristic
(see Tables 2, 6, 7, 8, 9 and 10}.

— We can establish a hierarchy of the relevant metrics according to the number of
examples that they can differentiate. By doing this we can see that the metric
which makes the greatest contribution is NA followed by NBinary R and finally
N1:NR which allows us to make simall refinements.

4.5. Threats to validity

Following several empirical studies [39,40] we will discuss the empirical study’s
various threats to validity and the way we attempted to alleviate them.

4.5.1, Threats to construct validity

The construct validity is the degree to which the independent and the dependent
variables accurately measure the concepts they purport to measure. The depen-
dent variables we used are maintainability sub-characteristics: understandability,
simplicity, analysability, modifiability, stability and testability. We propose subjec-
tive metrics for them (using linguistic variables), based on the judgement of the
subjects (see Sec. 3.2). As the subjects involved in this experiment have medium
experience in ER design we think their ratings could be considered significant. For
construct validity of the independent variables, we have to address the question: To
which degree do the metrics used in this study measure the concept they purport
to measure? Our idea. is to use metrics presented in Sec. 2 to measure the structural
complexity of an ERI}. From a system theory point of view, a system is called com-
plex if it is composed of many (different types of elements), with many (different
types of) (dynamically changing) relationships between them [53]. According to
this, we think that the construct validity of our independent variables can thus be
considered satisfactory. In spite of this, we consider that more experiments should
be made, in order to draw a final conclusion to assure construct validity.

4.5.2. Threats to internal validity

The internal validity is the degree to which conclusions can be drawn about the
causal effect of independent variables on the dependent variables. The following
issues have been dealt with:

— DIFFERENCES AMONG SUBJECTS. Using a within-subjects design, error variance
due to differences among subjects is reduced. As Briand et al. [40] remark in
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software engineering experiments when desaling with small samples, variations
in participant skills are a major concern that is difficult to fully address by
randomisation or blocking. In this experiment, we believe that even though
the professors and students had not exactly the same degree of experience in
modelling with ERDs, the experience they had was enough to do the required
tasks.

-— KNOWLEDGE OF THE UNIVERSE OF DISCOURSE AMONG ERDS. The ERDs were
from different universes of discourse but they are general enough to be easily
understood for each of the subjects such that we believe the knowledge of the
domain does not affect the internal validity.

— ACCURACY OF SUBJECT RESPONSES. Subjects assumed the responsibility for
rating each maintainability sub-characteristic. As they have medium experience
in ERD design, we think their responses could be considered valid.

— LEARNING EFFECTS. All the tests in each experiment were put in a different
order, to avoid learning effects. Subjects were required to answer in the order
in which the test appeared.

— FATIGUE EFFECTS. On average the experiment lasted for less than one hour,
so fatigue was not very relevant. Also, the different order of the tests helped to
prevent this effect.

— PERSISTENCE EFFECTS. In order to avoid persistence effects, the experiment
was carried out by subjects who had never done a similar experiment.

— SuBJECT MOTIVATION. All the professors who were involved in this experiment
participated voluntarily, in order to help us in our research. We motivated the
students who participate in the experiment, by telling them that similar tasks
to the experimental oues could be required in exams, so they wanted to make
the most of the experiment.

— OTHER FACTORS. Plagiarism and influence between students could not really be
controlled. Students were told that talking to each other about the experiment
was forbidden, but they did the experiment on their own without any control,
so we had to trust them as far as that was concerned.

From the results of the experiment we can conclude that there is empirical evidence
of the existing relationship between the independent and the dependent variables.
But only by replicating controiled experiments, where the measures would be var-
ied in a controlled manner and all other factors kept constant, could we really
demonstrate causality.

4.5.3. Threats to external validity

The external validity is the degree to which the results of the research can be gen-
eralised to the population under study and to other research settings. The greater
the external validity, the more the results of an empirical study can be generalised
to actual software engineering practice. Two threats of validity have been identified
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which limit the ability to apply any such generalisation:

— MATERIALS AND TASKS USED. In the experiment we tried to use ERDs and
tasks which can be representative of real problems, but more empirical studies
taking "real cases” from software companies must be done.

— SuBJECTS. To solve the difficulty of obtaining professional subjects, we used
professors and students of advanced software engineering courses. We are aware
that more experiments with practitioners and professionals must be carried out
in order to be able to generalise these results. However, in this case, the tasks to
be performed do not require high levels of industrial experience, so, experiments
with students could be appropriate [38].

In general, in order to extract a final conclusion we need to replicate this experiment
with a greater number of subjects, including practitioners. After carrying out the
replication we will have a cumulative body of knowledge; which will lead us to
coufirm if the presented metrics could really be used as early quality indicators,
and could be used to predict ERD maintainability.

5. Conclusions and Future Trends

The practical contribution of this paper is that it provides practitioners with a
set of objective and automatically computed metrics for assessing the structural
complexity of ERDs in the early phases of an IS life cycle. The proposed metrics
were theoretically validated following Briand et al's framework [26]. _

We have carried out a controlled experiment for ascertaining which metrics are
relevant for each maintainability sub-characteristic, and for building a prediction
model for them based on the values of proposed metrics. That prediction model,
built following a method for induction of fuzzy rule systems, is highly qualitative
and very closed to human minds, and above all very easy to understand.

Although the results obtained in the experiment are encouraging, we are aware
that it is necessary to do further empirical validation. Case studies with enterprises
must be carried out, with the goal of assessing these metrics as predictors of mainte-
nance cfforts, and therefore, determining whether they can be used as early quality
indicators. As Basili et ol. [38] said it is necessary to replicate experiments in order
to build knowledge through experimentation. This knowledge may help designers
to make better decisions in the process of conceptual modelling. ‘

We cannot disregard the increasing diffusion of the object-oriented (QQ)
paradigm in conceptual modelling. We are also working on metrics for OMT class
diagrams [54] and UML class diagrams [{55] but it is necessary to do further vali-
dation of them. In our knowledge, few works have been done for measuring models
that capture the dynamic aspects of an OO software systems [53, 56]. As is quoted
in [57] this is an area which needs further investigation. Thus, as a future work
we will define metrics for dynamic diagrams, such as state diagrams or activity
diagrams.
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Furthermore, it is necessary not only to address maintainability, but also to
focus on measuring other quality factors, such as that proposed in ISO/IEC 9126
[28].
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Appendix A

The following tables show the fuzzy models for the following maintainability sub-
characteristics: simplicity (F2), analysability (F3), modifiability (F'4), stability (F'5),
testability (F'6).

Table 6. Simplicity fuzzy model.

RULE NE NA NBinaryR F2 |ERROR )| COV%
0 |[6.0,9.0 MAX.MAX] |[MIN,MIN,MAX,MAX]|[3.0,5.0,6.0,8.0] 3.70| 01791 | 15.61
1 [MIN,MIN,MAX,MAX] | [MIN,MIN, MAX MAX]| [MIN,MIN,2.0,3.0] 3.107 G.0619 4.37
2 |[6.0,9.0,MAX MAX] | (MIN,MINMAX MAX]|[2.0,3.0,3.0,5.0] 3.16/ o.0os3 | 0.0
3 |{MIN,MIN,5.0,6.0] [MIN,MIN,MAX,MAX]|(2.0,3.0,3.0,5.0] 2.66| 0.1590 | 7.95
4 MIN,MIN,5.0,6.0] [MIN,MIN, MAX,MAX]|[3.0,5.0,6.0,8.0] 2.73| 0.0639 | 5.86
5 |[5.0,6.0,6.0,9.0] [MIN,MIN,19.6,29.0] |[3.0,5.0,6.0,8.0] 2.83! 0.1837 ) 11.46
6 [[5.0,6.0,6.0,9.0) [19.0,29.0,MAX,MAX] }[3.0,5.0,6.0,8.0] 3.55| 0.0909 | 8.42
7 {[MIN,MIN,MAX,MAX]] [MIN,MIN MAX,MAX]![10,0,11.0 MAX,MAX]|4.21| 0.1360 | 8.26
8 | [MIN,MIN.MAX,MAX]| [MIN,MIN, MAX,MAX}|[8.0,10.0,10.0,11.0]  |3.91| 0.1005 | 6.0%
9 |[5.0,6.0,6.0,9.0] [19.0,29.0,MAX MAX] |[2.0,3.0,3.0,5.0] 3.40| 0.0036 | ©.00
10 |[5.0,6.0,6.0.9.0 IMIN,MIN,12.0,15.0] [2.0,3.0,3.0,5.0| 2.39( 0.0043 0.00
11 |[5.0,6.0,6.0,9.0] {17.0,15.0,19.0,26.0| [2.0,3.0,3.0,5.0} 2.94| 00097 { 0.00
12 [5.0,6.0,6.0,9.0] [12.0,15.0,17.0,19.0) [2.6,3.0,3.0,5.0] 2.97| 0.2080 | 13.76
13 {[MIN,MIN.6.0,9.0] [MIN, MIN,MAX,MAX]|[6.0,8.0,8.0,10.0] 3.77| 0.0994 | 6.64
14 [6.0,9.0, MAX MAX] IMIN,MIN MAX MAX]|[6.0,8.0,28.0,10.0] 4.22| 0.1039 9.72

Table 7. Analysability fuzzy model.

rRULE NA N1:NR NBinaryR F3 |[ERROR;COV%

| 0 {35.0,44.0, MAX MAX] | [MIN,MIN,MAX MAX] | [MIN,MIN,MAX,MAX]:3.76( 0.1123 B8.68
1 [[19.0,29.0,20.0,32.0] | [MIN,MIN,MAX MAX]!{MIN,MIN,MAX,MAX]|3.23] 0.1740 | 13.79
2 [[17.0,18.0,19.0,26.0] | [MIN,MIN,MAX,MAX]|[MIN,MIN,MAX,MAX]|3.05| 0.1766 | 11.83
3 1133.0,34.0,35.0,44.0] | [MIN,MIN,MAX,MAX]|[MIN,MIN,MAX,MAX]|3.52| 0.1358 | 8.80
4 |[12.0,15.0,15.0,16.0] | [MIN,MIN,MAX MAX}| [MIN,MIN,MAX,MAX]|2.55| 0.1203 [ 9.38
5 |[MIN,MIN,12.0,15.0; |[MIN,MIN,MAX,MAX]|[6.0,8.0,MAX MAX] |3.38| 0.0128 | 0.00
6 [MIN,MIN,12.0,15.0] | [MIN,MIN MAX MAX]![3.0,5.0,6.0,8.0] 3.64; 0.1049 7.87
7 | [MIN,MIN,12.0,15.0] |[MIN,MIN,MAX,MAX] | [MIN,MIN,3.0,5.0] 2.64] 0.1180 | 7.48
8 {15.0,16.0,17.0,19.9] [MIN,MIN,MAX,MAX]/ {6.0,8.0, MAX MAX] 3.41] 0.0058 0.00
9 {115.0,16.0,17.0,19.0] |[MIN,MIN,MAX MAX]}|[3.0,5.0,6.0,3.0] 2,321 0.0214 | 226
10 |[29.0,32.0,33.0,34.0] | [MIN,MIN,MAX MAX]| [MIN,MIN,6.0,5.0] 3.74| 0.0485 | 4.00
11 |[29.0,32.0,33.0.34.0] |IMIN,MIN,MAX,MAX]|[6.0,8.0,MAX MAX] [4.56| 0.1336 | 10.58
12 {[15.0,16.0,7.0,19.0] | [MIN,MIN,MAX,MAX]| [MIN,MiN,2.0,3.0} 2.12( 0.0019 | 0.00
13 [[15.0,16.0,17.0,19.0] | [MIN,MIN,3.0,5.0] [2.0,3.0,3.0,5.0] 2.82| 0.1883 | 13.27
14 [[15.0,16.0,17.0,19.0] {[3.0,5.0, MAX MAX] [2.0,3.0,3.0,5.0] 2.87] 0.0056 | 0.00
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Table 8. Modifiability fuzzy model.

RULE NA NL:NR F4 { ERROR { COV%

0 [35.0,44.0 MAX, MAX] | [MIN,MIN,MAX,MAX] | 3.81 | 0.0976 8.68

1 [12.0,15.0,15.0,16.0] {MIN,MIN, MAX ,MAX] | 2.74 | 0.1151 9.38

2 [33.0,34.0,35.0,44.0 [MIN,MIN,MAX.MAX] | 3.76 | 0.0962 8.80

3 [MIN,MIN,12.0,15.0] [3.0,5.0, MAX,MAX] 3.19 | 0.0169 0.00

4 [MIN,MIN,12.0,15.0] [1.0,2.0,3.0,5.0) 2.86 | 0.1173 7.10

5 IMIN,MIN,12.0,15.0] [MIN,MIN,1.0,2.0| 334 | 0.1243 8.09

6 [15.0,16.0,17.0,19.0] [3.0,5.0 MAX, MAX] 3.2¢ [ 0.0119 0.00

7 [15.0,16.0,17.0,19.0] [1.0,2.0,3.0,5.0] 2,47 | 0.0883 7.32

8 [15.0,16.0,17.0,18.0] [MIN,MIN,1.0,2.0} 3.11 | 0.1301 8.62

9 [29.0,32.0,33.0,34.0] [MIN,MIN,3.0,5.0] 364 | 0.0007 0.00

10 [29.0,32.0,33.0,34.0} [3.0,5.0, MAX MAX] 4.38 | 0.1518 13.77

11 [19.0,26.0,29.0,32.0] [MIN,MIN,3.0,5.0] 3.24 | 0.0747 7.17

i2 [19.0,28.0,28.0,32.0] [3.0,5.0 MAX MAX] 383 | 00788 6.63

13 117.0,19.0,19.0,26.0] [MiIN,MIN,3.0,5.0] 2.93 | 0.0915 8.93

14 [17.0,18.0,19.0,26.0] [3.0,5.0, MAX MAX] 3.77 | 0.0538 2.90

Table 9. Stability fuzzy model.

RULE NA N1:NR NBinaryR F5 |[ERROR|COV %
0 ([17.0,18.0,19.0,26.0] |[MIN,MIN,MAX,MAX||[MIN,MIN,MAX MAX]|3.36] 0.1497 | 11.83
1 [135.0,44.0 MAX MAX] ! [MIN MIN MAX MAX|| [MIN,MIN,MAX MAX]|3.79] 0.0980 | 8.68
2 [[19.0,26.0,29.0,32.0] |[MIN MIN MAX MAX]|[MIN,MIN,MAX MAX](3.42| 0.1641 | 13.79
3 [[12.0,15.0,15.0,16.0) |[MIN,MIN,MAX,MAX]|[MIN,MIN,MAX,MAX]|2.83| 0.1187 | 9.38
4 }[15.0,16.0,17.0,19.0] |[MIN MIN,MAX,MAX) [6.0,80,MAX.MAX| [3.75] 0.0051 | 0.00
5 |IMIN,MIN,12.0,15.0] |[MIN,MIN,MAX ,MAX]|[6.0,8.0, MAX,MAX] [3.53[ 0.0104 | 0.00
6 |[15.0,16.0,17.0,19.0] |{MINMIN ,MAX MAX]|!3.0,5.0,6.0,8.0] 2.88| 0.0369 | 2.28
7 |IMIN,MIN,12.0,15.0] |[MIN,MIN,MAX,MAX]|[3.0,5.0,6.0,8.0] 3.64| 0.1043 | 7.87
8 |[MIN,MIN,12.0,15.0] |[MIN,MIN,MAX MAX]|[MIN,MIN,3.0,5.0] 3.12{ 0.1528 | 7.48
9 |[26.0,32.0,33.0,34.0] |{MIN,MIN,MAX MAX]|[MIN,MIN,MAX,MAX]|4.29] 0.1378 | 14.58
10 §[33.0,34.0,35.0,44.0] |[MIN,MIN MAXMAX]| [MIN,MIN,MAX,MAX]]3.80| 0.0954 | .80
11 1[15.0,16.0,17.0,18.0] {[MIN,MIN,MAX,MAX]|[MIN,MIN,2.0,3.0] 2.77| 0.0052 | ©0.00
12 }[15.0,16.0,17.0,19.0] [[3.0,5.0,MAX MAX] |[{2.0,3.0,3.0,5.0] 3.41| 0.0060 | 0.00
13 |[15.6,16.0,17.0,19.0] !1.0,2.0,3.0,5.0] [2.0,3.0,3.0,5.0] 2.88( 0.0734 | 5.19
14 |[15.0,16.0,17.0,19.0] |[MIN,MIN,1.0,2.0) [2.0,3.0,3.0,5.0) 3.74} 0.1233 | 8.08
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Table 10. Testability fuzzy model.

RULE NA N1:NR F6 | ERROR | COV%
o (35.0,44.0 MAX,MAX] | [MIN,MINMAXMAX] | 3.75 { 0.0783 8.68
1 [12.0,15.0,15.0,16.0) [MIN,MIN MAX,MAX] | 2.60 | 0.0914 9.38
2 [MIN, MIN,12.0,15.0) 13.0,5.0, MAX,MAX] 3.21 { 0.0113 0.00
3 (33.0,34.0,35.0,44.0] [MIN,MIN,MAX MAX] | 3.74 | 0.0848 8.80
4 [15.0,16.0,17.0,19.0] (3.0,5.0, MAX, MAX] 3.37 | 0.0078 0.00
5 [MIN,MIN,12.0,15.0] [1.0,2.0,3.0,5.0] 2.92 | 0.0905 7.10
6 [MIN,MIN,12.0,15.0] |MIN,MIN,1.0,2.0] 352 | 0.1102 8.09
T (15.0,16.0,17.0,19.0] 11.0,2.0,3.0,5.0] 2.49 | 0.0661 7.32
8 [15.0,16.0,17.0,19.0] [MIN,MIN,1.0,2.0] 3.31 | 013149 8.62
g (19.0,29.0,29.0,32.0] [MIN,MIN,3.0,5.0] 312 | 00611 7.17
10 (19.0,29.0,29.0,32.0] 3.0,5.0, MAX,MAX) 3.62 | 0.0620 6.63
11 117.0,19.0,19.0,26.0] MIN,MIN,3.0,5.0] 3.07 | 00866 8.93
12 [17.6,19.0,19.0,26.0| [3.0,5.0, MAX,MAX] 3.76 | 0.0252 2.90
13 [29.0,32.0,33.0,34.0] [MIN,MIN,3.0,5.0) 3.65 1 0.0079 0.00
14 129.0,32.0,33.0,34.0] [3.0,5.0,MAX MAX] 440 | 0.1047 13.77







