
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2002; 32:1239–1260 (DOI: 10.1002/spe.481)

Using a qualitative research
method for building a software
maintenance methodology

Macario Polo∗,†, Mario Piattini and Francisco Ruiz

Grupo Alarcos – Department of Computer Science, University of Castilla-La Mancha,
Paseo de la Universidad, 4, 13071-Ciudad Real, Spain

SUMMARY

This article explains our experience of using Action Research to develop a software maintenance
methodology involving two organizations: a group of university researchers and a software services
organization. The concept of ‘methodology’ comprises a wide set of elements whose identification, definition
and integration is not a trivial task, due to the magnitude of the project and to the different nature of the
organizations. The use of Action Research was a key factor in the progress of the research and has been
essential in the adoption of the methodology within the software services organization. Copyright  2002
John Wiley & Sons, Ltd.

KEY WORDS: Action Research; process models; qualitative research; software maintenance

1. INTRODUCTION

Software maintenance is the main source of work for software organizations [1]. Inspite of this, the
majority of them have their structures, methodologies and work teams prepared for new developments:
Singer [2] reveals that 61% of the professional life of programmers is dedicated to maintenance and
only 39% to new developments. Van Bon [3] notes that the management of the software maintenance
process is and has been neglected for many years, which has led to a lack of specific management
methodologies. Moreover, methodologies for software development are not directly applicable to
maintenance, since they disregard future stages of maintenance [4]. Basili et al. [5] confirm this issue,
affirming that the definition and validation of methodologies that take the specific characteristics of
software maintenance organizations and of their processes into account are required.

∗Correspondence to: Macario Polo, Escuela Superior de Informática, Paseo de la Universidad, 4, 13071-Ciudad Real, Spain.
†E-mail: Macario.Polo@uclm.es

Contract/grant sponsor: MANTIS; contract/grant number: CICYT 1997-1608 TIC
Contract/grant sponsor: MPM; contract/grant number: PROFIT 070000-2000-307

Published online 19 September 2002
Copyright  2002 John Wiley & Sons, Ltd.

Received 27 March 2001
Revised 14 February 2002

Accepted 17 June 2002

1240 M. POLO, M. PIATTINI AND F. RUIZ

Therefore, there is a general agreement that the characteristics of software maintenance are so
different from those of development that many of the development techniques, tools, model processes,
etc. are not directly applicable to maintenance.

• One possible cause of this is the difference in effort which must be devoted to tasks of
development and maintenance: it is common practice among programmers to put the majority of
their effort into the coding and unitary testing tasks during development; in maintenance, most
effort is devoted to understanding code and to non-regression testing.

• Another possible reason for such a difference has been suggested by [6], for whom maintenance
has more similarities with service than with software development, thus implying the avoidance
of the application of common development strategies to maintenance.

It may be that such divergence has been what has motivated an increasing number of software
companies to offer software maintenance services. Taking into account that, at present, a general lack of
control in the maintenance process exists, a well-managed and controlled maintenance process could
be offered by third-party organizations as an attractive value-added service. This activity is one of
the main sources of business of our partner company, Atos ODS, the third European organization, as
regards business volume, in software and telecommunication services. This company carries out the
software maintenance of large public, banking, industrial and telecommunications corporations.

The aim of this paper is to present and share our experience in the application of a qualitative
research method for building Mantema, a methodology for software maintenance which has been
jointly developed by our research group at the university and by Atos ODS. We are not, therefore,
presenting the methodology itself, a description of which may be found in [7]. We believe that sharing
our experience could be positive for both researchers and practitioners, due to the characteristics of
the project and to the different nature of the two organizations involved. This caused us to search for
the most adequate method to define and put the methodology into practice, and we considered Action
Research to be a very acceptable candidate. We knew the suitability of Action Research for performing
qualitative research with the involvement of several parties (in other areas, such as organizational
development) thanks to the papers referenced by [8]. Later, [9] confirmed the applicability of Action
Research for information systems. More recently, qualitative methods in general (including Action
Research) have been accepted for carrying out research in software engineering [10].

Currently, most of the empirical research undertaken in software engineering is quantitative and
statistics based; however, we believe that qualitative and observational studies should be encouraged
as they can also be valuable sources of knowledge.

The paper is organized as follows: Section 2 provides a brief description of Action Research; in
Section 3, we explain the concept of ‘methodology’, describing some of its implications; Section 4
describes how Action Research was used to build the Mantema methodology. In Section 5 we present
our conclusions and future research work. Appendix A contains the main milestones of the project and
Appendix B a description of the pilot projects used to build and test the methodology.

2. A SHORT DESCRIPTION OF ACTION RESEARCH

Action Research is a qualitative research method that brings theory and practice, and researchers
and practitioners together to resolve a problem [9]. According to these authors, Action Research is
particularly suitable for research that includes real organizations.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1239–1260

BUILDING A SOFTWARE MAINTENANCE METHODOLOGY 1241

Qualitative research differs from quantitative research in a number of aspects. These vary from its
purpose (to provide insights into the setting up of an organization or group of people, the problem
and its solutions versus the generalization of results from a sample of the population of interest), the
sample size (usually a small number versus a large one), the data collection method (unstructured or
semi-structured interviews, observations and group discussions versus structured techniques) and the
data analysis mechanism (non-statistical versus statistical).

In the field of information systems, the research client is an organization for which the researcher
provides various services, such as consultancy or change management, in return for access to research
data [11].

More formally, the actors involved in the research process of Action Research are [12]:

1. The Researcher, the individual or group who actively carries out the research. In our case, the
Alarcos Research Group.

2. The Critical Reference Group, which is the person/group with the problem for which the
Researcher must find a solution. The Critical Reference Group also participates in the research
process, although less actively than the Researcher. In a strict sense, it was the Atos ODS
company which had the problem which needed to be resolved, so could be assumed to play this
role. More concretely, only the people from Atos ODS that had interacted with the Researcher
really constituted the Critical Reference Group; that is to say that, during the first months of
research, only the managers of the Maintenance and Outsourcing Unit took part. When the
project was more advanced, more people (programmers and project managers) directly involved
in the pilot projects took part in it.

3. The Researched Object is the problem to be solved and, in this case, it is the management of
the software maintenance process. A possible way of achieving better management (that is, a
solution to such a problem) is through the use of specific methodology.

4. The Researched For is usually an external actor, not directly involved in the research, but who
might benefit from better information regarding the problem. In the Mantema project, Atos
ODS’s customers have this role, and there may also be other software organizations which could
obtain benefits from the methodology.

Action Research can be carried out in various ways. French and Bell [8] distinguish four variants
which depend mainly on the characteristics of the research project.

1. Diagnostic: the Researcher studies a problematic situation, makes a diagnosis and some
recommendations to the Critical Reference Group, without following up the results.

2. Participatory: the Critical Reference Group puts the recommendations made by the Researcher
into practice, sharing their effects and results together.

3. Empirical: the Critical Reference Group has a broad and systematic log of its action and effects.
This characteristic makes this variant very difficult to apply.

4. Experimental: several routes to reach the goal are evaluated. However, it is practically impossible
to evaluate the different routes because if evaluations are made in different Critical Reference
Groups or if they are made at different moments in the same Group, the distinct characteristics
of the groups or of the moments mean that adequate conclusions cannot be drawn.

Participatory Action Research was selected as the most suitable variant for our project. Research
carried out using this variant is eminently active, in the sense that there is continuous feedback between

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1239–1260

1242 M. POLO, M. PIATTINI AND F. RUIZ

Figure 1. The cyclic process of Action Research.

the Researcher and the Critical Reference Group: the first looks for solutions for the Researched
Object, whereas the second applies these solutions to its environment and explains the results to the
Researcher [13]. As Figure 1 shows, a more refined solution is produced after each research cycle.

3. IMPLICATIONS OF BUILDING A METHODOLOGY

According to [14], the concept of ‘methodology’ in the context of software engineering is not trivial.
In fact, among the elements that a methodology should provide, these authors cite the following:

1. a process model, which indicates the tasks we need to perform to execute the process;
2. metrics, to assess different quality attributes of the process and of the products generated;
3. a set of techniques, to help in the execution of some tasks of the process;
4. tools, which may automate tasks of the process and possibly its management;
5. deliverables, which should contain the definition of all the possible document templates to be

used during the process;
6. guidelines for helping in the process management, such as role identification, definition of team

structures, etc.

The building of a methodology that fulfills this wide concept implies the analysis, definition and
integration of elements of these types, all of which are integrated into the process model, which is
the core of the methodology. In fact, the process model tells us in which tasks we need to use which
metrics to measure a certain quality attribute; the process model also tells us which technique must
be employed to carry out a task more easily. There are vertical tools (that probably automate manual
techniques) to execute some tasks defined in the process model and horizontal tools which fulfill the
process model for managing projects.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1239–1260

BUILDING A SOFTWARE MAINTENANCE METHODOLOGY 1243

Therefore, building a whole methodology requires an expensive extended trial and error period.
The fact is that many of the methodologies for software development have been built after many years
of working and experience, sometimes as the union of other well-known, well-tested methodologies
or parts of methodologies (for example, the definition of UML, considered as a part of the Unified
Development Process, is defined by taking different pieces of the notation of OMT, Booch, etc., and
people around the world are continuously proposing new stereotypes, constraints, extensions, etc. to
the language). Experiences of other researchers in both our and other areas, and the need to avoid an
overly long development period encouraged us to select Action Research to conduct this project.

4. APPLYING ACTION RESEARCH

Atos ODS was responsible for the maintenance of large systems developed in Cobol, mainly
in banking, industrial and telecommunications environments. In order to tackle the problem of
maintaining these systems facing the Y2K and the Euro effect, the company saw the need to establish a
new methodology that would allow the systematization of the maintenance tasks, and the substitution,
interchange and incorporation of personnel without influencing the cost or time of the projects,
and which would keep control of the process. With this goal in mind, Atos ODS contacted the
Alarcos Research Group of the University of Castilla-La Mancha, which specialize in the definition
and implantation of methodologies for the development of information systems and in the use of
international standards in this area. Atos ODS and the University applied for a research grant to the,
at that time, Minister of Industry and Energy, to develop a methodology for software maintenance.
This project was approved by the Atyca program (grant number TA15/1999) and was carried out
between July 1997 and December 1999.

During the first phase of the project, which could correspond to the first step of Action Research
shown in Figure 1, we had several meetings at the offices of Atos ODS with the managers of its
Maintenance and Outsourcing Unit (who, in this way, became the first members of the Critical
Reference Group). These meetings served to describe, make contact and familiarize ourselves with
the problem that Atos ODS had. They mainly explained:

• The context in which the Atos ODS Maintenance and Outsourcing Unit worked. Most of its
customers are important companies with a large number of big legacy applications, initially
written more than ten years ago mainly in Cobol, Cobol/CICS and DB2. The lack of qualified
people to work in information systems companies, with a demand for qualified staff which is
greater than the supply [15], meant that people with other types of qualification (physics or
mathematics, and even others, such as Philosophy) were employed by the company as developers
and maintainers. These people were trained for some weeks or months in the specific language
and environment in which they were to work; after the course, they were usually moved into the
customer offices to start their job. However, mobility of staff in all companies is high, constituting
a serious problem, which is perhaps more acute in maintenance projects. On the other hand, the
number of contracts and projects within the company was continually increasing, both at national
and international level, which forced the company to incorporate new personnel.

• The way in which they are accustomed to carrying out their current maintenance projects.
Most Atos ODS customers, as in most organizations with no maintenance methodology, solve

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1239–1260

1244 M. POLO, M. PIATTINI AND F. RUIZ

their problem by ‘brute force’, assigning as many people as they think are required to the
problem. Unfortunately, these people work with undocumented systems, and in so doing become
indispensable and not easily exchangeable, thereby causing serious difficulties and delays when
they leave the project or the company. As a result, there is no systematic, organized process; they
are continuously ‘extinguishing fires’, in a state of emergency, and are incapable of planning.
Under these conditions, these organizations either maintain underused resources or burn them
out, making them work above their possibilities. On the other hand, these organizations do not
use metrics to measure the complexity of programs to be maintained, which leads to accurate
estimations not being obtained. This has negative consequences, implying a lack of maintenance
control.

With this initial information, collected via conversations whose semi-formal agenda was previously
distributed to all the members of the Critical Reference Group and of the Researcher, we were able to
obtain a good understanding of the Atos ODS situation. With these meetings, both parties agreed on
the need to start looking for possible already existing solutions regarding the Researched Object (that
is to say, a methodology for managing the software maintenance process) that could be directly applied
by Atos ODS or, otherwise, tailorable at a reasonable cost.

4.1. Looking for a process model

Most methodologies for software engineering areas share the afore-mentioned idea of having a core
process model. For example, in the first lessons of one of the most recently referenced methodologies,
the Unified Development Process, a spiral model is generally used to explain its main structure, stages
and so on.

With this idea in mind, and placed in the second step of Action Research (Figure 1), the researcher
started looking for process models for the maintenance process, which caused several related proposals
to be studied, including standards and experience reports. The most meaningful of these could be used
as reference frameworks to progressively complete the methodology with the rest of the elements
presented in Section 3, such as the IEEE 1219 Standard for Software Maintenance [16], the ISO/IEC
12207 International Standard for Software Life Cycle Processes [17], the draft of the future ISO/IEC
14764 (which analyses the 12207 Maintenance Process in more detail) and some maintenance guides,
such as those of [18].

The people that, at that moment, composed the Critical Reference Group, studied the selected and
commented proposals prepared by the Researcher, which was an instance of the third step shown in
Figure 1, for some weeks; they then drew up a descriptive document containing the characteristics of
each of them. The initial preference of the Critical Reference Group was for the IEEE 1219 Standard,
mainly motivated by the experience of one of its members, since he had experience in the application
of IEEE standards during his years of service in the Spanish Army. However, in a decisive meeting, the
Researcher was able to convince the Critical Reference Group of the greater suitability of ISO/IEC
12207 highlighting: (1) the big international impact that this international standard was having in
the life cycle processes in general (Radatz et al. [19] report that several other standards are being
substituted or modified due to the advent of the 12207), as in the particular case of maintenance ([1]
notes that ‘ISO/IEC 12207 will drive the world software trade and will impact on maintenance’); and
(2) the Spanish Minister for Public Entities had adopted the 12207 Standard as the basis for the Metrica

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1239–1260

BUILDING A SOFTWARE MAINTENANCE METHODOLOGY 1245

Figure 2. The macrostructure of the ISO/IEC 12207 maintenance process.

Methodology, which must be used to develop software for the Government [20]. Finally, both parties
selected this standard, also influenced by the existence of a tailoring process in the same standard: the
tailoring process makes possible to obtain an adapted version either of the standard or of a part of it
more easily, remaining this version conforming to the standard itself.

4.2. Defining the process model of Mantema

At this point, we had completed the first turn of the Action Research cycle and were, therefore, ready
to ‘identify questions to guide the research’, although now with the way much clearer and with a
much stronger basis than in the beginning. Note, however, that although this first turn produced a more
refined solution of the Researched Object (as is expected from the reading of Figure 1), it was still not
a directly applicable solution to the problem, but just a very concrete set of materials, a proposal and a
common agreement to continue the work. In spite of this, this first turn was an essential factor for the
success of the project.

From a more-in-depth study of the maintenance process defined in the 12207 Standard, we
found that its six activities (process implementation, problem and modification analysis, modification
implementation, maintenance review/acceptance, migration and retirement) could be visually grouped
into a set of activities that compose a graph like that shown in Figure 2. Each one of its nodes constitutes
a ‘pluggable’ piece of the whole process that can be independently analyzed and studied in such a
manner that, at any given moment, we can focus our effort on just one fragment.

The most important node in Figure 2 is perhaps the central one, which contains the activities and
tasks to be executed for the software modification, and which is mainly composed of the ‘modification
implementation’ activity of ISO/IEC 12207. This activity introduces, as its tenth task, a complete
execution of the 12207’s development process, which in turn consists of 13 tasks. Table I depicts
the results of this introduction.

To our understanding, maintenance with a development process inside involves an excessive number
of tasks, some of which overlap (as we analyzed in [21]). At a new meeting whose purpose was to
study the second node of Figure 2, the Researcher explained the possibility of deleting those tasks
of the development process that are introduced in maintenance but which overlap or are not useful.
There was an agreement on those that could be removed.

At this point, we took the decision to follow the idea of the 12207 Standard, i.e. dividing the
future process model into activities, which are in turn composed of tasks. We then began to define
a common structure for tasks, understanding at that moment that every task could be characterized by
the corresponding activity in which it was included, a name, the input and output products, techniques

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1239–1260

1246 M. POLO, M. PIATTINI AND F. RUIZ

Table I. The modification implementation activity in ISO/IEC 12207.

Activity Task No. Task description

. . . 1–8 . . .
Modification 9 Conducting analysis and determining which documentation, software

implementation units and versions need to be modified
10 Entering at the 10.1 Process implementation

development 10.2 System requirement analysis
process to 10.3 System architectural design
implement the 10.4 Software requirement analysis
modifications 10.5 Software architectural design

10.6 Software detailed design
10.7 Software coding and testing
10.8 Software integration
10.9 Software qualification testing
10.10 System integration
10.11 System qualification testing
10.12 Software installation
10.13 Software acceptance support

. . . 11–24

that could help in its execution and the people in charge; that is to say, by some of the elements which,
if adequately integrated, could continue composing the methodology, in the sense exposed in Section 3.

For this last issue (people responsible for each task), we merely made a distinction between the
three companies involved in maintenance outsourcing projects. In the ISO/IEC 12207 IS there is also
a set of definitions for possible organizations involved in software projects. In our case, we initially
distinguished the following:

1. the Maintenance Organization, as the company that provides the software maintenance service;
2. the Customer, as the organization that owns the software under contract;
3. the User, as the organization that uses the software under contract.

As can be seen, it is not casual that the first actor identified plays the role of Critical Reference
Group in our Research, whereas the Customer and the User are probably members of the possibly
wide community of ‘Researched For’ actors.

4.3. Refinement of the process model

Once the tasks of the ‘Execution of the intervention’ node of Figure 2 had been identified and selected,
the Researcher gave all their attention to building an initial structure of a small process model for
it, filling-in some of the elements that composed their tasks: for the moment only input and output
products (some of them in the form of documents), and techniques. Four pilot projects were then
selected by Atos ODS to apply to future, successive versions of these pieces of methodology, and of
the methodology as a whole, which are described in Appendix B.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1239–1260

BUILDING A SOFTWARE MAINTENANCE METHODOLOGY 1247

After some discussions with the managers of the Maintenance and Outsourcing Unit, mainly related
to the contents of each task, the maintenance personnel in charge of the pilot projects received the
first versions of the process model available at that moment, what included some programmers as
project managers. These people were, therefore, becoming part of the Critical Reference Group. In fact,
according to the definition of [12] reproduced in Section 2, they belong to the ‘group with the problem’,
but until this moment they had not participated in the research process. Now they were starting to
participate, although for the moment they did not directly share their impressions with the Researcher.
Moreover, they still did not apply these first versions of the process model: they continued working
as before (with their current method), but taking notes and making observations about its supposed
application. Every week, and together with their habitual working reports, they reported their comments
on the simulated application of the methodology to their respective project managers, who in turn
explained their suggestions, observations, etc. to the members of the Critical Reference Group that
acted as our interlocutors.

We met these interlocutors periodically and also, from the third meeting on, the person responsible
for the quality of Atos ODS, since the company was to begin a certification process in ISO 9000. In this
way, new methodology drafts were developed that were again delivered to the maintenance teams. At
that moment in time, the results of the simulated application were given to us by our usual contacts
rather than being directly reported to us by the final users, although we had copies of all their notes and
observations, as well as all kinds of reports, summaries, etc., made by the project managers.

Therefore, in these first stages, the application of the methodology was simulated and not real, and
consequently the opinions of the maintenance personnel did not totally correspond with those of a real
application, and there could have been some misinterpretation due to the intermediate steps that the
conversations took. This risk had to be assumed by all the parties, since the main goal of Atos ODS at
that moment was to guarantee the operation of the systems being maintained. The personnel had such
a heavy work load at the time that they could not carry out a parallel execution.

The process model became more mature when, as a result of the analysis of the results of these initial
applications (in many cases, maintainers did not execute all the proposed tasks or, if they did, they
added notes explaining the possible lack of suitability of some of them), the practical impossibility
of considering a single set of tasks to be followed up for all the possible types of maintenance was
evidenced, i.e. the nature of projects (and, within the projects, of interventions) were so different that
it was not reasonable to have the same set of tasks for all the maintenance types. This occurred, for
example, with the tasks proposed for analyzing alternative solutions and for carrying out integration
tests, which were quite systematically disregarded in urgent modifications. Although, due to the privacy
clauses signed by Atos ODS and its customers, we sometimes had difficulties in accessing concrete
quantitative data on the projects, we observed later that most urgent interventions affected only a few
lines of code that did not require this kind of test. On the other hand, it is quite obvious that this type
of change requires neither a documented proposal nor analysis of alternatives.

With this situation, we held a meeting to propose the definition of different process models for the
different types of maintenance in which the Critical Reference Group was interested. Initially, they
identified those that they had experienced, but without defining them clearly; in fact, these types had
only a broad, coarse correspondence with those usually identified in the literature. However, we built,
for example, a first version of a process model for a type of maintenance that our interlocutors called
‘evolutive’. Inspite of the initial conformity of Atos ODS with this definition, in reality the maintenance
personnel never carried out all the tasks of this kind of intervention, since it really corresponded to a

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1239–1260

1248 M. POLO, M. PIATTINI AND F. RUIZ

mixture of adaptive and perfective, but without entirely corresponding to either of them. Figure 3 shows
a table, corrected after a joint meeting, corresponding to the ‘evolutive’ type of maintenance that was
initially identified but finally removed from the methodology, and that was divided into two different
types: perfective and adaptive.

As a consequence of this kind of feedback, the Researcher proposed distinguishing different
process models for corrective, perfective, preventive and adaptive maintenance types (which are the
types usually distinguished in the literature), together with a more rigorous characterization of them.
The execution of different tasks depending on the maintenance type of the modification request is
a recommended practice by some references [16,17,22], and the idea was quickly accepted by our
interlocutors at the Critical Reference Group. Such a distinction was a very important step in the
project, since we could focus our main effort on the development of a brief process model for each
type of maintenance, thus producing a set of ‘technical guides’, one for each type, which had also been
suggested by the members of the maintenance teams. Perhaps, for the reason of simplicity, corrective
maintenance received our main initial attention.

The first technical guide released (that of corrective maintenance) started its real application in the
pilot projects about seven months after the project was signed (see the table with the main milestones
in Appendix A). For the data collection and monitoring of the maintenance projects using the first
versions of Mantema, Atos ODS adapted the MANUTEN CONDUCT tool that had previously been
used by Atos ODS both in international (with Fiat Auto) and national projects (Valencia City Council
or the Argentaria Banking Corporation), as shown in [23]. Figure 4 shows one of the reports about
corrective maintenance obtained by MANUTEN CONDUCT. As can be seen in the figure, corrective
maintenance interventions were at that moment controlled differently according to three different
categories: very critical, critical and non-critical. Later, it was demonstrated that the ‘very critical’ and
‘critical’ anomalies could be jointly managed by a new type of maintenance, the ‘urgent-corrective’,
because all the interventions of these types followed the same set of tasks. This fact evidenced, as
one of the first results of the actual application of the methodology, the convenience of dividing the
corrective maintenance into two subtypes depending on the urgency of the intervention, and thereby
obtaining the urgent and the non-urgent corrective maintenance types.

We were, therefore, dealing with five types of maintenance (urgent corrective, non-urgent corrective,
perfective, preventive and adaptive), each one with its own set of activities and tasks. However, mainly
motivated by the different economic treatment that Atos ODS gives to each type of intervention, the
last four types were grouped under the ‘plannable maintenance’ denomination, the urgent-corrective
remaining as ‘non-plannable’. This distinction is just conceptual, since there really exist five types of
maintenance with their five corresponding process models. After this change, the initial structure of
Figure 2 was redrawn as in Figure 5, which was used during the joint meetings to abstract ourselves
from details.

The distinction of five actual maintenance types (although conceptually grouped into two types)
facilitated more members of the Critical Reference Group to play a more active role in the research
process, since the maintenance teams could really apply the different technical guides to the pilot
projects and report their actual results, without breaking contact with our initial interlocutors. So, for
example, the analysis of the conversations and results reported by programmers evidenced that the
non-urgent corrective and the perfective maintenance types shared exactly the same set of activities and
tasks, which made us give a common denomination to both types. This proposal was initially accepted
by the managers of the Maintenance and Outsourcing Unit, but the later incorporation of outsourcing

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1239–1260

BUILDING A SOFTWARE MAINTENANCE METHODOLOGY 1249

F
ig

ur
e

3.
A

do
cu

m
en

tw
it

h
so

m
e

no
te

s
ta

ke
n

du
ri

ng
a

jo
in

tm
ee

ti
ng

.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1239–1260

1250 M. POLO, M. PIATTINI AND F. RUIZ

Figure 4. A monthly report of corrective maintenance.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1239–1260

BUILDING A SOFTWARE MAINTENANCE METHODOLOGY 1251

Figure 5. The structure of the process model after refinements.

activities to the methodology (explained in the next section) evidenced a lack of adaptation, since it
is especially important to keep a record of corrective modification requests (there are several related
Service Level Agreements covenanted between the Maintenance Organization and the Customer, see
Section 4.5).

Such a distinction of types and their actual application also accelerated the Researcher’s work,
allowing us, for example, to reuse some tasks in different types of maintenance. As Table II shows,
some tasks can be completely shared between different types of maintenance (such as the P1.3,
‘Selecting alternative’, which is common to both the non-urgent corrective and the perfective); others
are partially shared (such as the P1.1 task, which defines special outputs for the adaptive maintenance,
or P1.2, which is only applicable to non-urgent corrective and perfective, but with different and
exclusive output products depending on the type) and others belong to just one type of maintenance
(not shown in the table).

Until this moment, both the Researcher and the Critical Reference Group had only focused on the
development of the ‘Execution of the intervention’ node of Figure 2; however, while the technical
guides were being applied, the Researcher could dedicate most of their effort to the study of the
‘Definition of the maintenance process’ node.

4.4. Incorporation of other activities

While the Critical Reference Group was applying the successive technical guides for urgent and non-
urgent corrective, perfective, preventive and adaptive maintenance types, the Researcher continued
advancing in the completion of the whole process model (remember we have only analyzed the middle
node of Figure 2), which is the basis for constructing the whole methodology (see Section 3). As a

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1239–1260

1252 M. POLO, M. PIATTINI AND F. RUIZ

Ta
bl

e
II

.A
fr

ag
m

en
to

f
th

e
de

ta
il

ed
st

ru
ct

ur
e

of
th

e
pl

an
na

bl
e

m
ai

nt
en

an
ce

ty
pe

.

A
ct

iv
it

y

In
te

rv
en

ti
on

M
od

ifi
ca

ti
on

re
qu

es
ta

na
ly

si
s

an
d

te
st

s

N
on

-u
rg

en
tc

or
re

ct
iv

e,
pe

rf
ec

tiv
e,

N
on

-u
rg

en
tc

or
re

ct
iv

e,
pe

rf
ec

tiv
e

N
on

-u
rg

en
tc

or
re

ct
iv

e
..

.
pr

ev
en

tiv
e

an
d

ad
ap

tiv
e

an
d

pr
ev

en
tiv

e
an

d
pe

rf
ec

tiv
e

Ta
sk

s
P

1.
1

P
1.

2
P

1.
3

..
.

M
R

as
se

ss
m

en
t

D
oc

um
en

ti
ng

po
ss

ib
le

so
lu

ti
on

s
S

el
ec

ti
ng

al
te

rn
at

iv
e

In
pu

ts
S

of
tw

ar
e

pr
od

uc
ti

n
op

er
at

io
n

S
of

tw
ar

e
pr

od
uc

ti
n

op
er

at
io

n
S

of
tw

ar
e

pr
od

uc
ti

n
op

er
at

io
n

..
.

M
od

ifi
ca

ti
on

re
qu

es
t

M
R

in
th

e
w

ai
ti

ng
qu

eu
e

Im
pl

em
en

ta
ti

on
al

te
rn

at
iv

es
(D

O
C

10
)

O
ut

pu
ts

M
R

in
th

e
w

ai
tin

g
qu

eu
e

C
P

E
rr

or
di

ag
no

si
s

an
d

po
ss

ib
le

S
el

ec
te

d
al

te
rn

at
iv

e
(f

ul
lD

O
C

9)
..

.
In

te
rv

en
ti

on
ca

le
nd

ar
so

lu
ti

on
s

(D
O

C
9)

Im
pl

em
en

ta
ti

on
al

te
rn

at
iv

es
(D

O
C

10
)

P
ro

du
ct

m
ea

su
re

s
(D

O
C

16
a)

A
S

ch
ed

ul
e

es
ti

m
at

io
n

P
L

is
to

f
so

ft
w

ar
e

el
em

en
ts

an
d

R
es

ou
rc

es
di

sp
os

ab
il

it
y

pr
op

er
ti

es
to

im
pr

ov
e

(D
O

C
12

)
P

ro
du

ct
m

ea
su

re
s

(D
O

C
16

a)

Te
ch

ni
qu

es
P

or
tf

ol
io

an
al

ys
is

S
ou

rc
e

co
de

an
al

ys
is

Q
ue

ry
to

th
e

hi
st

or
ic

al
..

.
P

ro
je

ct
m

an
ag

em
en

t
P

ro
je

ct
do

cu
m

en
ta

ti
on

an
al

ys
is

D
B

M
et

ri
cs

T
im

e
de

di
ca

te
d

to
th

e
ta

sk
T

im
e

de
di

ca
te

d
to

th
e

ta
sk

T
im

e
de

di
ca

te
d

to
th

e
ta

sk
N

um
be

r
of

af
fe

ct
ed

F
P

s
E

rr
or

or
ig

in
an

d
ca

us
e

R
es

po
ns

ib
le

M
ai

nt
ai

ne
r

M
ai

nt
ai

ne
r

M
ai

nt
ai

ne
r

In
t.

pr
oc

es
se

s
Q

ua
li

ty
as

su
ra

nc
e

D
efi

ni
tio

ns
:

M
R

=
M

od
ifi

ca
tio

n
R

eq
ue

st
C

P
=

N
on

-u
rg

en
tc

or
re

ct
iv

e
an

d
pe

rf
ec

tiv
e

P
=

pr
ev

en
tiv

e
D

B
=

da
ta

ba
se

In
t.

pr
oc

es
se

s
=

in
te

rf
ac

es
w

ith
ot

he
r

pr
oc

es
se

s

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1239–1260

BUILDING A SOFTWARE MAINTENANCE METHODOLOGY 1253

result, we assumed the ‘process implementation’ and the ‘maintenance review/acceptance’ activities of
ISO/IEC 12207 (almost as they appear in the Standard, although completing them with inputs, outputs,
etc.) to compose the ‘Definition of the maintenance process’ node identified in Figures 2 and 5, which
is comprised of two sets of tasks.

• The first set is executed only once, at the beginning of the maintenance project, and its goal is to
prepare the future change process, such as to set the rules for accepting or rejecting modification
requests or the implementation of the configuration management process. Tasks from the 12207
Standard were completed, for example, by including the documents that must be produced in
each task (such as the technical summary of the software to be maintained, whose template was
already defined and used by Atos ODS).

• The second set is executed once for each modification request received, and includes the
reception of the request, the decision on its corresponding maintenance type (or its rejection),
etc.

For the definition of this set of activities and tasks, we only had contact with the managers of the
Maintenance and Outsourcing Unit, since neither programmers nor project managers are in charge of
signing contracts, deciding on the acceptation of requests, etc.

In these same meetings, and also by analyzing the available data about projects reported by
MANUTEN CONDUCT (such as time, product and process metrics or percentages of interventions
of each maintenance type), the Critical Reference Group asked for the Researcher to extend the
methodology to give support to outsourcing. As we stated in Section 1, Atos ODS supplies maintenance
services to both large private and public companies. This kind of commercial relationship should be
taken into account in the methodology.

Consideration of outsourcing entails the addition of new activities for the establishment and the
ending of the outsourcing relationship; from a high level of abstraction, this just implies the addition
of a new, initial node to the graph of Figure 5, as well as a new final one, resulting in the process model
shown in Figure 6.

Mantema is usable with or without the existence of outsourcing. When there is outsourcing, the
following three tasks of the ‘Initial activities of outsourcing’ node must be carried out; when there is
not, they can be totally or partially omitted:

1. start-up and information collection;
2. preparing the maintenance contract;
3. contract.

After the execution of these tasks there is a written, formal contract between the supplier and the
customer organization to provide and respectively receive the service; however, the actual provision of
the maintenance service will not start until the execution of the ‘Knowledge acquisition’ task, that was
placed in the second node of Figure 6 (‘Definition of the maintenance process’). This task is used by
people in charge of the future maintenance interventions to learn how the software operates, working
together with the current maintenance team during a period of about 1 or 2 months. At the end of this
period, the service provider has enough knowledge to start the maintenance work, as well as updated
documentation on the software, including audit documents that are delivered to the customer (thus
avoiding the impression of not having worked).

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1239–1260

1254 M. POLO, M. PIATTINI AND F. RUIZ

Figure 6. The final structure of the process model.

The last node of Figure 6 has one activity with three tasks, which must be carried out at the end of
the outsourcing relationship:

1. delivering an inventory and documentation;
2. training new maintenance personnel (a task that can be considered as the opposite to that

explained in the previous paragraph);
3. definite end of service.

A consequence of the introduction of outsourcing activities was the refinement of the three
organizations we had identified at the beginning: it is clear that not all the people in the Maintenance
Organization should be in charge of, for example, signing a maintenance contract. Moreover, not all
of them are capable of adding a field to a table of the database. Therefore, a clearer identification of
the people involved in the project was required. For this purpose, the Researcher studied some related
literature, and made a proposal distinguishing several profiles in each organization. Later, in a joint
meeting with Atos ODS staff, the proposal was tailored to their actual needs and situation [24].

4.5. Completing the elements of the methodology

Inspite of having focused our attention mainly on building the process model, a number of works
were being developed in parallel. Their main aim was to propose elements in order to obtain a whole
maintenance methodology.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1239–1260

BUILDING A SOFTWARE MAINTENANCE METHODOLOGY 1255

According to Section 3, some of these elements are techniques, understood as practices that could
help in the execution of some tasks. Some techniques found in the literature were added to fill in blank
boxes of the process model (i.e. innovative techniques for reengineering or reverse engineering), but
also some others were proposed to cover some deficiencies.

1. During the study of the activities required for outsourcing, a technique to estimate the risks
associated with a maintenance project was developed [25]. This technique uses the set of
situational factors of Euromethod for the acquisition of software systems [26], but is adapted
to the maintenance environment and to the service supplier’s point of view.

2. Inspite of the ‘non-plannable’ name selected for the urgent-corrective maintenance, a technique
to allocate and schedule resources for future urgent-corrective maintenance projects was
proposed and empirically validated [27].

By using both techniques, the service supplier can get an idea of how many resources should be
scheduled for a project or, even, for a period within a project. With these data, both parties can negotiate
the project budget and consider other kinds of related indicators that were also defined and incorporated
in the methodology:

1. maximum time for fixing errors due to urgent/non-urgent corrective modification requests;
2. maximum number of assumable urgent/non-urgent corrective anomalies per month;
3. maximum weekly deviation (i.e. maximum number of modification requests that can be received

in a week);
4. sanction to be paid for each hour of delay in correcting urgent-corrective modification requests.

Other interesting commitments can be offered to the customer by the supplier service, such as
decreasing the number of blocking errors after the contracted period, decreasing mean cyclomatic
complexity, etc. To offer and guarantee the fulfilling of this commitment, the supplier must control the
program evolution: Mantema proposes to collect a number of metrics in almost all its tasks, such as
the number of lines of code added, changed or deleted, or the cyclomatic complexity of each routine
before and after the intervention, etc. Moreover, as databases today are very important in information
systems maintenance, although the research and usage of database metrics have been neglected, we
have proposed and validated a wide set of metrics for several types of databases: relational and object-
relational [28–30].

In many cases, these metrics have been both empirically and formally validated, and then
incorporated into the methodology. Together with the input and output products, techniques, etc., every
task includes a set of metrics that must be collected during its execution.

The results so briefly exposed in this section are not a trivial result or a consequence of the research,
but the confirmation of Dick’s opinion [31] that Action Research is ‘a family of methodologies,
each of which pursues action and research’. In fact, parallel to the cyclic Action Research process,
other research methods were used for developing other elements of the methodology that were being
incorporated in Mantema as they were finished.

On the other hand, the collection of metrics and the application of the methodology without
automatic support were shown to be a difficult task by the final users of Mantema, which had already
been transmitted to us on various occasions. To assist these issues, we developed Mantool, an automatic
tool which allows the management of the software maintenance process according to the Mantema
methodology [32].

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1239–1260

1256 M. POLO, M. PIATTINI AND F. RUIZ

Another aspect that also had been highlighted by the Critical Reference Group members was the
lack of definition of the contents of some of the documents whose filling in was proposed in Mantema.
As a response to this, we built a set of templates for all the possible documents that could be generated
during the maintenance process. Mantool also incorporates these templates to collect data from users.

4.6. Mantema as a whole

Every node of Figure 6 can be looked at in detail, thus obtaining a table in the style of Table II
containing a rigorous descriptive structure. In these tables, the basic information required to perform
every task is summarized, but methodology users can find more information in Mantema’s technical
manual. This, together with the automatic support offered by Mantool, makes the maintainer’s work
much easier.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the way in which we have used Action Research to build a methodology
for software maintenance. From the Researcher’s point of view, the simple fact of the experience itself
has been extremely positive, since we have obtained good results and have explored and learnt in depth
another very interesting approach to research. We are in agreement, therefore, with the idea of [5]
that qualitative insight has a great importance in understanding real situations (which includes written
reports, oral conversations and document analysis or observations, all complemented by research
bibliography).

On the other hand, we have verified the perfect fit that Action Research offers to more classical
research methods (i.e. quantitative ones). Returning to the terminology used in the rest of the article,
the cyclical ‘process model’ of research allows the joint utilization of other vertical methods.

It is also important to highlight that the ‘participatory’ variant of Action Research has made the
Critical Reference Group a very active participant, more so as the project advanced. In this manner, the
Researcher is not seen as a mere consultant or auditor, but the Critical Reference Group feels itself as
co-responsible for both the project development as well as the final results.

Inspite of the positive experience obtained with Action Research, it would have been desirable to
have more formal mechanisms for collecting data and opinions: obviously, the chain of conversations
previous to our meetings with the Critical Reference Group introduced noise and information loss.
However, we had to take this risk due to budget and time constraints (remember that the company was
tackling the Y2K and euro effects).

The benefits that Mantema has provided to the Critical Reference Group are also favourable. In fact,
many of the drawbacks that the previous maintenance management method had have disappeared.
Mantema allows the control of the process to be maintained through the continuous measurement of
products and of the process itself; it facilitates the interchange of personnel between projects thanks to
the continuously-updated documentation and to the identification of people in charge of tasks, which
in turn decreases the costs and the problems of people leaving.

Mantema has contributed to Atos ODS obtaining the ISO 9000 certification in the maintenance
service rendered to customers. The initial framework used to build Mantema (the ISO/IEC 12207
IS) allows its future expansion and the covering of some deficiencies, such as its relationships with

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1239–1260

BUILDING A SOFTWARE MAINTENANCE METHODOLOGY 1257

other life-cycle processes: the maintenance process defined in Mantema has several interfaces with
supporting and organizational processes of the 12207 Standard (for example, with the documentation
process). As some of them have been left out of Mantema, we are and have been working on the
integration of some other processes which had not previously been considered as an important part
of the maintenance. So, for example, the audit (a supporting process) of the maintenance process was
analyzed in [33], whereas the incorporation of improvement activities (another supporting process) to
Mantema was studied in [34]. In connection with this issue, we are involved in new projects both with
Atos ODS as well as with other companies applying, of course, Action Research.

APPENDIX A. THE MAIN MILESTONES OF THE PROJECT

Participants

Year Event Atos Alarcos

1997 Mantema project signature ✓ ✓
Problem exposition ✓ ✓

Study and recollection of bibliography ✓

Building an initial structure of the methodology ✓
Technical meetings for refining such a structure ✓ ✓

Refinement of the initial structure ✓
New technical meetings ✓ ✓

Key milestone: proposal of separate treatment for every maintenance team ✓

1998 Definition of a technical guide for corrective maintenance ✓
Application of such ‘mini methodology’ to real projects ✓

Refinement of technical guides for the rest of maintenance types ✓

Comment on corrective maintenance: a new division, urgent and non-
urgent corrective

✓

Presentation of a methodology for perfective maintenance ✓
Study and short comments of the methodology for perfective maintenance ✓

Presentation of Mantema version 1: five technical guides for five types of
maintenance (urgent and non-urgent corrective, perfective, preventive and
adaptive)

✓

Application of Mantema version 1 to real projects ✓

1999 Study of Mantema version 1 for the correction of defects and addition of
characteristics (outsourcing, etc.)

✓

Search in the literature and study of techniques for helping in certain tasks
of the maintenance process

✓

Proposal of techniques for planning resources ✓

Study of techniques for estimating risks in outsourcing maintenance
projects

✓

Generation of templates for maintenance documents ✓

Report of faults during the application of Mantema version 1 ✓

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1239–1260

1258 M. POLO, M. PIATTINI AND F. RUIZ

Participants

Year Event Atos Alarcos

Report advising on the convenience of setting apart urgent corrective, and
of grouping into just one type (non-plannable maintenance) non-urgent
corrective, perfective, preventive and adaptive (plannable)

✓

Building of Mantema version 2 ✓

Final stage of Mantema project (I): application of Mantema version 2 to
Atos ODS projects

✓

2000/ Results of the application of risk techniques ✓

2001 Refinement of techniques; validation with historical data ✓
Final stage of Mantema project (II): incorporation into the methodology
of the last comments of Atos ODS; compilation of Mantema version 3.0

✓

APPENDIX B

The different technical guides elaborated for the five types of maintenance were used in several pilot
projects of one of the most important customers of Atos ODS (one of the biggest Spanish banking
corporations). These projects are all implemented in Cobol, Cobol-DB2, Cobol-CICS and Cobol-
CICS-DB2:

• Tax collection. This application has 135 programs with 103.331 LOC, and its main functions are:
tax collection for the Ministry of Finance, autonomous regions and city councils; information
collection on tax refunds to be sent to the Ministry of Finance; and seizures of accounts under
orders from the Ministry of Finance.

• Receipt collection. It has 157.281 lines of code in 196 programs. It manages the payment of the
debits received via diskettes or via electronic interchange with other corporations.

• Transfers. It has 308 programs and 247.156 lines of code. This application manages transfers
between accounts of the same or different entities, both periodic or sporadic.

• Pro-active risk. This project analyses all the available information of the clientele in order to
automate the granting of credit. It was developed in 1994 and 1995 and runs on an IBM 9000-
982 with MVS-TSO. It has 576 programs, 235 with access to DB2 and 94 on-line transactions,
which execute 227 different programs.

ACKNOWLEDGEMENTS

The authors wish to thank the anonymous reviewers whose suggestions have considerably improved the paper.
This work was partially supported by the MANTIS project (grant number CICYT 1997-1608 TIC, Ministerio de
Ciencia y Tecnologı́a) and the MPM project (PROFIT 070000-2000-307).

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1239–1260

BUILDING A SOFTWARE MAINTENANCE METHODOLOGY 1259

REFERENCES

1. Pigoski TM. Practical Software Maintenance. Best Practices for Managing your Investment. Wiley: New York, 1997.
2. Singer J. Practices of software maintenance. Proceedings International Conference on Software Maintenance. IEEE

Computer Society Press: Los Alamitos, CA, 1998; 139–245.
3. Van Bon J. Sourcing. World Class IT Service Management Guide, Van Bon J (ed.). ten Hagem & Stam Publishers: The

Hague, The Netherlands, 2000.
4. Schach SR, Tomer A. A maintenance-oriented approach to software construction. Journal of Software Maintenance:

Research and Practice 2000; 12(1):24–45.
5. Basili V, Briand L, Condon S, Kim Y, Melo W, Valett JD. Understanding and predicting the process of software

maintenance releases. Proceedings International Conference on Software Engineering. IEEE Computer Society Press:
Los Alamitos, CA, 1996; 464–474.

6. Niessink F, van Vliet H. Software maintenance from a service perspective. Journal of Software Maintenance: Research
and Practice 2000; 12(2):103–120.

7. Polo M, Piattini M, Ruiz F. Managing the software maintenance process. World Class IT Service Management Guide.
Van Bon J (ed.). ten Hagem & Stam Publishers: The Hague, The Netherlands, 2000.

8. French WL, Bell CH. Organizational Development: Behavioral Science Interventions for Organization Improvement.
Prentice-Hall: London, 1996.

9. Avison D, Lau F, Myers M, Nielsen A. Action research. Communications of the ACM 1999; 42(1):94–97.
10. Seaman CB. Qualitative methods in empirical studies of software engineering. IEEE Transactions on Software Engineering

1999; 25(4):557–572.
11. Kock N, Lau F. Information systems action research: Serving two demanding masters. Information Technology and People

2001; 14(1):6–11.
12. Wadsworth Y. What is Participatory Action Research? Action Research International.

http://www.scu.edu.au/schools/sawd/ari/ari-wadsworth.html [12 June 2002].
13. Padak N, Padak G. Guidelines for Planning Action Research Projects.

http://archon.educ.kent.edu/Oasis/Pubs/0200-08.html [12 June 2002].
14. Graham I, Henderson-Sellers B, Younessi H. The OPEN Process Specification. ACM Press and Addison-Wesley: Essex,

UK, 1997.
15. European Commission. Employment in Europe 2001—Recent trends and prospects. Office for Official Publications of the

European Communities, Luxembourg.
http://europa.eu.int/comm/employment social/empl&esf/docs/empleurope2001 en.pdf [12 June 2002].

16. IEEE. Standard for Software Maintenance, IEEE Std. 1219-1992. The Institute of Electrical and Electronics Engineers,
Inc.: New York, 1992.

17. ISO/IEC. Information Technology-Software Life Cycle Processes, ISO/IEC 12207. Swiss, 1995.
18. Mazza C, Fairlough J, Melton B, de Pablo D, Scheffer A, Stevens R. Software Engineering Guides. Prentice-Hall: London,

1996.
19. Radatz J, Olson M, Campbell S. MIL-STD-498. Crosstalk, the Journal of Defense Software Engineering 1995; 8(2):2–5.

http://www.stsc.hill.af.mil/crosstalk/1995/feb/milstd.asp [12 June 2002].
20. Ministerio de Administraciones Públicas. Métrica 3: guı́a de referencia. Tecnos: Madrid, 2001.

http://www.map.es/csi/metrica3 [12 February 2002].
21. Polo M, Piattini M, Ruiz F, Calero C. Mantema: A complete rigorous methodology for supporting maintenance based on

the ISO/IEC 12207 standard. Proceedings Third European Conference on Software Maintenance and Reengineering. IEEE
Computer Society Press: Los Alamitos, CA, 1999; 205–210.

22. Pressman RS. Software Engineering: a Practitioner’s Approach (3rd edn). McGraw-Hill, 1993.
23. Piattini M, Villaba J, Ruiz F, Bastanchury T, Polo M, Martı́nez MA, Nistal C. Mantenimiento del Software. Modelos,

técnicas y métodos para la gestión del cambio. Ra-Ma: Madrid, 2000.
24. Polo M, Piattini M, Ruiz F, Calero C. Roles in the maintenance process. ACM Software Engineering Notes 1999; 24(4):84–

86.
25. Polo M, Piattini M. Cuestionario para la identificación de riesgos en proyectos de mantenimiento. Actas de las V Jornadas

de Ingenierı́a del Software y Bases de Datos, Universidad de Extremadura, Cáceres, Spain, 2000; 30–35.
26. Euromethod project. Euromethod ver 1. http://projekte.fast.de/Euromethod/ [12 June 2002].
27. Polo M, Piattini M, Ruiz F. Planning the non-plannable maintenance. Project Control: the Human Factor, Proceedings

of the Combined 11th European Software Control and Metrics Conference and the 3rd SCOPE Conference on Software
Product Quality (ESCOM-SCOPE 2000). Shaker Publishing: Maastricht, The Netherlands, 2000; 49–57.

28. Piattini M, Calero C, Ruiz F. Table oriented metrics for relational databases. Software Quality Journal 2000; 9:79–97.
29. Piattini M, Calero C, Sarahoui HA, Luonis H. An empirical study with object-relational databases metrics. 4th International

Workshop on Quantitative Approaches in Object-Oriented Software Engineering (in ECOOP’2000), Centre de recherche
informatique de Montreal, Montreal, Québec, 2000; 39–46.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1239–1260

1260 M. POLO, M. PIATTINI AND F. RUIZ

30. Dı́az Ó, Piattini M, Calero C. Measuring triggering interaction complexity in active databases. Information Systems Journal
2001; 26(1):15–34.

31. Dick B. Postgraduate programs using action research. Action learning, action research and process management: theory,
practice, praxis, Zuber-Skerritt (ed.), Faculty of Education, Griffith University, Brisbany, Australia, 2000.

32. Polo M, Piattini M, Ruiz F. Mantool: a tool for supporting the software maintenance process. Journal of Software
Maintenance and Evolution: Research and Practice 2001; 13(1):77–95.

33. Ruiz F, Piattini M, Polo M, Calero C. Audit of software maintenance process. Auditing Information Systems, Piattini (ed.).
Idea Group Publishing: Hershey, PA, 2001.

34. Polo M, Piattini M, Ruiz F, Jiménez M. Assessment of maintenance maturity in IT departments of public entities: Two
case studies. Proceedings of the 3rd International Conference on Product Focused Software Process Improvement (Lecture
Notes in Computer Science, vol. 2188). Springer: Berlin, 2001; 86–97.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1239–1260

	1 INTRODUCTION
	2 A SHORT DESCRIPTION OF ACTION RESEARCH
	3 IMPLICATIONS OF BUILDING A METHODOLOGY
	4 APPLYING ACTION RESEARCH
	4.1 Looking for a process model
	4.2 Defining the process model of Mantema
	4.3 Refinement of the process model
	4.4 Incorporation of other activities
	4.5 Completing the elements of the methodology
	4.6 Mantema as a whole

	5 CONCLUSIONS AND FUTURE WORK
	APPENDIX A. THE MAIN MILESTONES OF THE PROJECT
	APPENDIX B

