IFAC

-

INTERNATIONAL FEDERATION OF AUTOMATIC

M

5™ IFAC WORKSHOP ON

AL-TIME PROGRAMMING

WRTP'2000 ‘

Palma, Spain

May 17-19, 2000

Preprints edited by:
Alfons Crespo & Joan Vila

Organised by ~
Universitat Politécnica de Valéncia UIB
Universitat de les llles Balears Mo

UNIVERSIDAD POLITECNICA DE VALENCIA

Servicio de Publicaciones SPUPV-2000.2270

Copyright © 2000 IFAC

All Right Reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means: electronic, electrostatic, magnetic tape,
mechanical, photocopying, recording or otherwise, without permission in writing from the
copyright holders.

First Edition 2000

These preprints were reproduced by means of the photo-offset process using the manuscripts
supplied by the authors of the different papers. The manuscripts have been typed using
different typewriters and typefaces. The layout, figures and tables of some papers did not
agree completely with the standard requirements; consequently the reproduction does not
display complete uniformity. To ensure rapid publication this discrepancy could not be
changed; nor could the English could be checked completely. Therefore, the readers are
asked to excuse any deficiencies of this publication which may be due to the above
mentioned reasons.

The Editors.

Edita: Servicio de Publicaciones de la Universitat Politécnica de Valéncia
Camino de Vera s/n
46071 Valéncia
Tel: +34 963 877012
Fax: +34963 877 912

Dep6sito Legal: V-1768-2000

REAL-TIME PROGRAMMING 2000
(WRTP’2000)

A Proceedings volume from the 25" IFAC Workshop,
Palma, Spain, 17 - 19 May 2000

Edited by

A. CRESPO and J. VILA
Departament d’Informatica de Sistemes i Computadors,
Universitat Politécnica de Valéncia,

Valencia, Spain
T Y-S =1y
00 ALY Foq
mEE . g4 00042072
CSYO0 O ifA REA
[80 s
Published for the

INTERNATIONAL FEDERATION OF AUTOMATIC CONTROL
by

PERGAMON

An Imprint of Elsevier Science

Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK
Elsevier Science Inc., 660 White Plains Road, Tarrytown, New York 10591-5153, USA
Elsevier Science Japan, Tsunashima Building Annex, 3-20-12 Yushima, Bunkyo-ku, Tokyo 113, Japan

Copyright © 2000 IFAC

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechanical,
photocopying, recording or otherwise, without permission in writing from the copyright holders.

First edition 2000

Library of Congress Cataloging in Publication Data
A catalogue record for this book is available from the Library of Congress

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 0-08-043686 2

These proceedings were reproduced from manuscripts supplied by the authors, therefore the reproduction
is not completely uniform but neither the format nor the language have been changed in the interests of
rapid publication. Whilst every effort is made by the publishers to see that no inaccurate or misleading
data, opinion or statement appears in this publication, they wish to make it clear that the data and
opinions appearing in the articles herein are the sole responsibility of the contributor concerned.
Accordingly, the publisher, editors and their respective employers, officers and agents accept no
responsibility or liability whatsoever for the consequences of any such inaccurate or misleading data,
opinion or statement.

Printed in Great Britain

CONTENTS

INDUSTRIAL PRESENTATIONS
Applied Research: A Scientist's Perspective 1
U. SCHMID
Systems Engineering of a Successful Train Control System 9
H.W. LAWSON

EMBEDDED SYSTEMS

A Contract-Based Language for Embedded Control Systems 17
J. EKER, A. BLOMDELL
Dynamic Processes in a Static Environment 23
HO. TRUTMANN
Design and Programming of Peripheral Interfaces for Embedded Real-Time Control Systems 29

M. COLNARIC, D. VERBER
REAL-TIME OPERATING SYSTEMS

Early Experience with an Implementation of the POSIX.13 Minimal Real-Time Operating System for Embedded
Applications 1 35
M. ALDEA RIVAS, M. GONZALEZ HARBOUR

An Approach to Symbolic Worst-Case Execution Time Analysis 43
G. BERNAT, A. BURNS
Combined Intrinsic-Extrinsic Cache Analysis for Preemptive Real-Time Systems 49
A. MARTI, X. MOLERO, A. PERLES, F. RODRIGUEZ, J.V. BUSQUETS
Predictable and Efficient Memory Management for Composite Events 57
J. MELLIN
DEPENDABLE SYSTEMS

Safety Related Real Time Programming 63
W.A. HALANG, G. TSAI
An Approach to Dependability Modelling of Real Time Systems 69
P. YUSTE, J.C. CAMPELOQ, P.J. GIL, J.J. SERRANO
Improving Temporal Behavior with Graphical Method in Real-Time Systems 75
F. COTTET, L. DAVID
Adaptive Distributed Real-Time Transaction Management in Safety-Critical Systems 81
H.F. WEDDE, S. BOHM

REAL-TIME SCHEDULING
Scheduling Real-Time Systems by Means of Petri Nets 89
E. GROLLEAU, A. CHOQUET-GENIET
Real Time Scheduling Methods Requirements in Distributed Control Systems 95

P. MARTI, R. V J.M. FUERTES, G. FOHLER

Some Practical Results about Fixed-Priority Scheduling and Offsets 103
JM. LOPEZ, J.L. DIAZ, M. GARCIA, D.F. GARCIA

vii

FORMAL METHODS

Formal Specification of a Safety Shell in Real-Time Control Practice
AEK. SAHRAOUL E. ANDERSON, J. van KATWIIK, J. ZALEWSKI

Schedulability Analysis in Real-Time Embedded Systems Specified in SDL
J.M. ALVAREZ, M. DIAZ, L. LLOPIS, E. PIMENTEL, J.M. TROYA

Analyzing Temporal Constraints with Binary Decision Diagrams
D. DELFIEU, P. MOLINARO, O.H. ROUX

OBJECT ORIENTATION IN REAL-TIME SYSTEMS

A Generic Framework for Quantitative Modeling of Real-Time Systems in UML
B. SELIC

Migrating from a Non-Object-Oriented to a Traceable Object-Oriented Process
F. BORDELEAU, M.A. CLOUTIER, D. BIAGE

A Scheduling Strategy to Preserve Object Autonomy
J.L. CONTRERAS, J.L. SOURROUILLE

Achieving Hard Real-Time Java
M.J. BAXTER, J.M. BASS

VERIFICATION AND VALIDATION OF REAL-TIME SYSTEMS

Verification of Both Functional and Timing Requirements of Real-Time Systems
S. WANG

Basic Environment for Real Time Systems Analysis Using CAN Bus
M. MARCOS, J. PORTILLO

A Tool for Modular Modelling and Verification of Hybrid Systems
D. BEYER, H. RUST

An Approach to Use System Models to Assist in the Definition of Test Procedures
J. GARBAJOSA, H. GARCIA, M. ALANDES, M-A. MAHILLO, M. PIATTINI

DISTRIBUTED RT SYSTEMS

A Framework for Developing Distributed Hard Real-Time Applications
J.J. GUTIERREZ GARCIA, M. GONZALEZ HARBOUR

Methodology and Tool Support for Developing Distributed Real-Time Applications
C. BRUDNA, C. MITIDIERI, C. PEREIRA, J. KAISER

APPLICATIONS

On the Use of a Railroad Model for Real-Time Systems Teaching and Experimenting
A. ALONSO, RF. ALFONSO, J.F. RUIZ, M. GARCIA-VALLS

Database Model Update Ordering for Fault Handling in Manufacturing Cells
S-A. ANDREASSON, A. ADLEMO

Author Index

viii

109

117

123

129

135

143

151

157

163

169

175

183

191

197

203

211

Copyright © IFAC Real-Time Programming,
Palma, Spain, 2000

AN APPROACH TO USE SYSTEM MODELS TO ASSIST
IN THE DEFINITION OF TEST PROCEDURESI

1

Juan Garbajosa, Hector Garcia, Maria

Alandes

Technical University of Madrid (UPM)

E.U. Informatica. Dpt. OEI

Ctra. Valencia Km. 7, E-28031 Madrid, Spain

Fax: +34-913367520, jgs@eui.upm.es

Maria-Angeles Mahillo
Technical University of Madrid (UPM)
E.U. Informatica. Dpt. LPSI
Ctra. Valencia Km. 7, E-28031 Madrid,
Spain
amahillo@eui.upm.es

Mario Piattini
University of Castilla - La Mancha (UCLM)
E.U. Informatica.
Ronda de Calatrava 5, E-13004 Ciudad Real. Spain

mpiattin@inf-cr.uclm.es

ABSTRACT

Testing is crucial for all kind of systems but for those including real-time features becomes,
perhaps, even more crucial. Testing of Complex Systems, at end user level, is more and more
often performed in a systematic fashion using test procedures.

The test engineer has usually to produce test procedures in low-level programming languages and
with little or no assistance. Within this paper we present an approach in which we outline how a
model of the system to be tested can be used to provide assistance to the test engineer.

Copyright ©2000 IFAC

Keywords: system testing, acceptance testing, assistance, validation, tools, environments, model-

based testing, test procedures

1. INTRODUCTION

Testing is crucial for all kind of systems but for those
including real-time features becomes, perhaps, even more
crucial. To perform testing satisfactorily is becoming
more and more difficult and costly as long as systems
become more and more complex. During the last years a
huge effort to improve testing of systems has taken place.
Our research effort are focussed on testing from the end-
user perspective, known often as acceptance testing,

Among systems to test we can set two groups depending
on its behavioural model. The behavioural model must
account or not for sequences of operations in which later
operations depend on actions taken by earlier operations.
For the first group the generation of test cases is still a

subject under research as stated in (Dalal et al.,, 1999),
while in the second group we are starting to have
approaches with promising results as we can see in
section 2.

Our research work is focused on the first group, for
which test procedures (TP) design lays on the knowledge
the test engineer. Integration of our developments with
some performed for the second group of systems or
subsystems is being considered.

This paper presents an approach based on the experience
obtained from the work on the subject in the satellite
industry Garbajosa et al., 1997). Satellites require a
careful testing before they are launched. Afterwards it is,
usually, too late to fix operation mishaps.

1Thmmrchwmkw:spufomndmthmdxARCOpropu.TheInwrmmswmIOommssmnforScnmandTw}m]ogynfﬁle
Government of Spain, CICYT, partially supports the Project ARCO Ref. TIC98-0782.

175

Our approach is based on providing support to the test
engineer in the definition and execution of test
procedures by means on an environment specifically
designed and built with that objective. At present we are
focusing on the telecom domain, specifically network
management,

As discussed in (Garbajosa et al., 2000) we claim that our
approach is significantly independent of the domain.
Correspondence between our present work, and other in
the space domain (Valera, 1999) is a confirmation of this
statement.

Even when it is not relevant to the main subject presented
within this paper, we would like to mention that one of
our objectives is to achieve low-cost environments,
affordable to industry. A domain independent approach
may help to accomplish this objective.

This paper is structured as follows: within this section,
Introduction, we present the scope of the article. In
Related Research Activities in System Testing we just
outline some related work. Then we present a Assisted
Test Procedure Definition: Concept and Environment
Architecture, where we summarise the concept for
Assisted test procedure definition and the Environment
architecture to support it.

Next, we describe the Model Representation of our
system, in the telecom domain. It is actually a subschema
of our model, but it will facilitate the understanding of
how assistance is supported. Then, in Implementing
Assistance, we present some mechanisms we use to
support assistance based on the system model, and
finally, some Conclusions are drawn, outlining future
work.

2. RELATED RESEARCH ACTIVITIES IN
SYSTEM TESTING

Approaches available in literature are mostly applicable
to systems for which a data model is sufficient to capture
the system’s behaviour, that is, control information is not
required in the model. As stated in (Dalal et al, 1999) the
complexity of the system under test’s response to a
stimulus must be relatively low.

Model-based testing, can be found in (Dalal et al, 1999).
Testers using this approach concentrate on a data model
and generation infrastructure instead of hand-crafting
individual tests.

In (Cunning et al. 1999) an algorithm to automatically
generate event scenarios is presented. This algorithm
extracts the needed information from the requirements
forms and produces a set of scenarios that can be used to
test transaction oriented systems. Related approaches can
be found in (Lamsweerde et al.1998) and (Sutcliffe et al.
1998).

In (Benjamin et al. 1999), it is possible to bridge the gap
between formal verification and simulation by using
hybrid techniques. Traditional techniques based on
simulation can only verify operation over a small subset
of the state space and it is often hard to generate tests to
hit interesting corner cases.

A discussion and a comparison of these approaches and
that described within this paper can be found In
(Garbajosa et al, 2000).

176

3. ASSISTED TEST PROCEDURES
DEFINITION: CONCEPT AND ENVIRONMENT
ARCHITECTURE

To produce TP the user (test engineer or end user) must
be acquainted with a lot of information about the system
to test and programming languages. He must be able to
fill a lot of gaps about the system. He also needs to have a
wide knowledge on computing issues such as
configuration, and distribution of systems, and so on. In
most of cases it should be desirable to free control and
test engineers from knowing the entire structure of those
complex systems.

3.1. ASSISTED TEST PROCEDURE
CONCEPT

Measurement and action concepts are the base of test
definitions. Test activities involve the generation of
actions and the visualisation and analysis of
measurements. Actually, measurements verify that the
actions performed -by means of the test engineer
commands— get the desired effect. In object oriented
terms, actions may be associated to object operations and
measurement to values returned. In the satellite
application domain, these are called Telemetry &
Telecommand, usually known as TM/TC to collect under
the same term a widest set of forms to represent
communication between the test system and the Man
Machine Interface. We shall designate the system to be
tested as Unit Under Test. Our developments are based
on this scheme.

As we already mentioned system test procedure
definition is a complex activity that requires the test
engineer to be fully acquainted with several areas such as
the physical systems for which the tests are being
defined, and programming techniques.

Testing of these systems requires the production of series
of commands that validate the system operation, in a
repetitive fashion. These series of procedures are often
called test procedures. Test procedures are produced
using programming languages.

The gap between the way the definition is performed and
what the engineer should understand as a natural way of
working is quite significant. Thinking in terms of test
engineers, that might be not so familiarised with
computer concepts as computer scientists are, the use of
these programming languages requires to work at low
level of abstraction, farther away from what the real
problem is. Programming languages used (C, Atlas,
Tcl/Tk ETOL) are frequently not high level ones. But
even high level programming languages, such as object
oriented, are not yet so close to real life systems as we
would like to be.

Therefore it makes a lot of sense to assist the test
engineer in his work. This scheme is valid not only for
the satellite domain but also for most of the application
domains with systems to be tested. Figure 1 shows a
comparison between a traditional environment, to define
and execute test procedures, and those under
development. A further discussion and a comparison of
traditional versus assisted test procedure definition can be
found in (Garbajosa et al. 1999) and Garbajosa et al.
2000).

Therefore the test engineer faces three problems:

- To design —define— the test procedures that will
validate the system.
- To translate these test procedures into a
programming language.
- To execute these tests procedures with little or
no help of the test environment.
Derived problems to cope with are the following:

- To maintain tests procedures. Maintainability
will also get an advantage from the approach
we propose.

- Guarantee full test coverage

Figure 1: TOPEN Environment Architecture

3.2. TEST AND OPERATION ENVIRONMENT
ARCHITECTURE
In [Garbajosa et al., 2000] the basic components of the

Test and Operation Environment Architecture
(TOPEN) are described. Here we shall just mention them.

The conceptual architecture can be implemented, in terms
of components, as follows: Man Machine Interface,
Data/knowledge Repository and code generator. The test
engineer handles the Man

Figure 2: Network Management System

Machine interface. The System Environment Control
subsystem allows the test engineer to modify the system
state so that situation that represent incidents can be
supported.

A data and knowledge repository is used to support a
model of the system. Other components are a code
generator module, which generates the code that will get
into the industrial system and, finally, a low-level
interface between the industrial system and environment
would be needed. As we shall see below these basic

177

components can be refined into a more detailed
architecture. Monitoring can be performed working with

MIB data.
M
Command Intermal |

LA

&
| S
Delets Connection

Figure 3. Command data Model

1
| GatConnection info |

| Craate Connechon

4. MODEL REPRESENTATION

As we outlined in section 3 UUT subsystems and
components can be represented by objects, and actions by
operations. Measurements are the result or output of
applying an action on an object.

In figure 2 we can see a Network Management System
schema. An Agent receives commands from a number of
Managers that represent operators. Those commands
handle a number of network Elements (NEs). Information
needed to handle this is in a database. The TOPEN man
machine interface implements the Managers man
machine interface. Actually TOPEN interacts directly
with the Agent.

In figure 3 we can sec a subschema for the Command
data model. It shows the class hierarchy for the
connection-related commands. We have that a
Connection command is a subclass of Commands. A
connection command can be to create, delete or get
connection. These commands would operate the UUT,
that is the Network management system. W

Figure 4. Network Model (UUT).

Now we can analyse the UUT model. This model,
another subschema shown in figure 4, has LAN and
WANS as central components. For our example we shall
focus our attention in WANS, though we kept LANs for
easier understanding. Connection relates network
elements, as segments. The information of the different
connections is described in the route tables, with its route
entries. We see that a network element can be either a
router or a generic. In the example of next section all the
NE will be routers, that are the nodes of specific LANs.

But only the routers will be of interest to us for our
purposes.

5.IMPLEMENTING ASSISTANCE

We can use two different situations to show examples of
how assistance can be provided. The first one, providing
assistance to set connections, will describe a situation in
which the test engineer gets assistance based on the
structural characteristics of the model. It is a rather static
view of the model.

In the second case, creating new route tables, there exist
a response to an unexpected system state after an incident
has taken place. It is a more dynamic view of the model
even when it does not imply real simulation.

5.1. PROVIDING ASSISTANCE TO SET NE
CONNECTIONS

In the case of network management systems the test
engineer may have problems to know, at a given moment,
which elements are currently installed, their physical and
logical configuration, etc. However, this information is
stored in the TOPEN MIB, as long as all the network
elements (NEs) are stored there together with their state.

Let us suppose that the test engineer wishes to make a
number of connections among several NEs to enable
several new routes. Even when he may have a clear idea
of the initial and final nodes, there exists an additional
problem. Each NE supports a number of protocol
interfaces, and he will be able to connect only those NE
interfaces that are compatible, and not yet used in a
connection. This fact can be considered as a structural
constraint: connections can be established between
compatible interfaces. The data model supports it, and its
implementation would not allow the database to not to
respect it. This is easily achievable, with a relational
database implementation, such the one we are producing.

Therefore the test engineer, once he would select the
connect command, he would be requested to indicate the
first NE from the entire list of NEs and then the second,
and if would press OK. This is shown in figure 5. If he
failed to hit the NE with the right available interface, the
test engineer could just receive a message such as
incompatible NE interfaces. It may be worse: data base
operation rejected. Or worse: internal error xx. Or even
worse such as receiving a message from the Agent
explaining that the operation failed, what additionally
would overload the net. But for the moment little

KB eidace(l]
2 802 Jindeddace
3 Send sdeoco
4 K25intedace [2)

i XDwtedacell]
2 XZintedace (2)
I

Figure 5 — Generation of connection command

178

ImMNEid=5
13810071 15

imNEid=4
13810042 20
Figure 6. Router level configuration

Yet we can positively use the information stored in the
MIB. Once introduced the first NE the TOPEN can show
only those NEs with available interfaces that are
compatible with those not yet used interfaces of the
selected NE. Furthermore, when two instances of NE are
selected, the system will allow the user to connect only
those NE interfaces compatible and not connected.

In this way the TOPEN provides two desired
functionalities:
1) Assistance to the user at the time to define
commands or TP

2) We are avoiding overloading communication
lines. As the TOPEN does not allow to define
wrong commands, we are eluding those
command packets that could not be executed,
and, furthermore, both replies and notifications.

5.2. CREATING NEW ROUTE TABLES

If we are testing a Network Management System the Test
and Operation Environment (TOPEN) will be able to
detect a number of problematic situations, for which
assistance provision may be useful.

To provide this assistance TOPEN needs to store every
Command/Test Procedure that has been executed and
every Reply or Notification received from the NMS.
Knowing commands and responses it is possible to
identify the current state of the elements of the network to
be tested.

Let us assume a NMS, with routers as nodes, with the
following forms route tables defined as follows:

ipRouteDest: The destination IP address of this route.

ipRoutelfIndex: The index wvalue which uniquely
identifies the local interface through which the next hop
of this route should be reached.

IpRouteNextHop: The IP address of the next hop of this
route. (In the case of a route bound to an interface which
is realized via a broadcast media, the value of this field is
the agent's IP address on that interface.)"

IpRouteMask: Indicate the mask to be logical-ANDed
with the destination address before being compared to the
value in the ipRouteDest field.

179

ImNEid: The NE identifier in the network. This identifier
must be unique for each NE instance.

Let us assume that we have a network as defined in figure
6. Let us also assume the following values for route table
fields:

Table 1 —imNEid = 1 ipRouteTable

Table 2 — imNEid = 2 ipRouteTable

Table 3 - imNEid = 3 ipRouteTable

Table 4 — imNEid = 4 ipRouteTable

Table 5 — imNEid = 5 ipRouteTable

If the NE with [P address 138.254.4.1 goes down, that is
our NE with imNEid = 2, the Agent shall send an
equipmentAlarm notification that will be received by the
TOPEN. Though this incident might take place
spontaneously, for testing purposes, the test engineer may
induce it through the System Environment Control
interface.

It may help to understand the example to mention that an
address such as 138.100.56.0 for ipRouteDest means that
destination may be any 138.100.56 router.

In this case assistance may be structured s follows:
1. Detect the scope of the incident
2. Suggest what to do to the test engineer

3. Provide a number of feasible choices if that is
case

Once an equipmentAlarm notification has been received
and processed the TOPEN will check if the system NEs
configuration let the system remain operational. The
decision will be taken according to the information stored
within the MIB. If the answer is negative, as in this case,
TOPEN will suggest the test engineer to include within
the TP a command set ipRouteTables to modify the route
tables for NEs with imNEid equal to 1 and 3 as shown
below. Those are the tables affected by the faulty router.
It will return the system to an operational situation even
being the router faulty. Obviously those packets sent to
the subnetwork controlled by 138.254.4.1 will be lost, but
not those sent to those subnetworks that are routed
through the router that has gone down, because an
alternative route could be generated, as shown in the
route tables shown below.

In this case TOPEN will be suggesting only one choice as
alternative route table. This should be properly
understood. Actually the example is very simple. In a real
situation we might have several routes to choose and it
should be the test engineer he who decides.

Table 6 — imNEid = | new ipRouteTable

Table 7 — imNEid = 3 new ipRouteTable

In the case of network management systems a lot of
problems could be handled according to this approach,
such as those related to quality of service, processing
errors, or congestion of the traffic

6. CONCLUSIONS

‘We have shown how, taking a system model as a basis,
assistance can be provided to a test engineer as long as a
specific environment is used. This approach is especially
useful for systems whose behaviour depends on the result
of former operations.

This approach is significantly domain independent. We
are applying it to network management system and
former work with satellite applications respects the same
basic architecture. It will be necessary to systematise its
development. We are working on this issue. This let us
think of being able to build low-cost environments
Another issue of interest is that within this environment
can also integrate tools that are used to support model-
based testing as described in Dalal et al., 1999). Our
second assistance example could be understood as such
integration.

Acknowledgements

Authors are indebted to Bryan Melton and Serge Valera
for those discussions that, later, became fundamental to
obtain some of the results. Authors are also indebted to F.
Sanchis, C. Cuvillo, F. Arizmendi and E. Marcos for their
useful comments. Authors are grateful to the students
who have taken part in the implementation of the
environment: Angelica Gonzalez, Esther Alonso, Antonio
Garcia y Ahmad Mareie

Generation from a Structured Requirements
Specification. [EEE ECBS'99. S. R. Dalal, A. Jain, N.
Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton B. M.
Horowitz.

Lamsweerde, A. van, and Willemet, L (1998). Inferring
Declarative Requirements Specifications from
Operational Scenarios. IEEE Transactions on Software
Engineering. Vol. 24, No. 12: December 1998, pp. 1089-
1114

Requirements Engineering.IEEE Transactions on
Software Engineering. Vol. 24, No. 12: December 1998,
pp. 1072-1088.

Dalal, S. R., Jain, A., Karunanithi, J. M. Leaton, J.M.,
Lott, C.M., Patton, G.C. and Horowitz B.M.(1999).
Model-Based Testing in Practice. IEEE Int. Conf. on
Software Engineering. ICSE ‘99 Los Angeles CA.

Benjamin, M., Geist, D., Hartman, A., Wolfsthal, Y.,
Mas, G., Smeets, R.(1999). A Study in Coverage-Driven
Test Generation. ACM DACS"99.

Garbajosa, J. and Wolff M.(1997). Automatic Generation
of Satellite Test Procedures. Proc. International
Symposium Computing Tools, Systems Engineering and
Competitiveness. Association Aeronautique et
Astronautique de France (AAAF) Paris, March.
Garbajosa, J., Piattini, M., Mahillo, M.A., Garcia, H.,
(1999). A Development Environment to Support Assisted
Definition of Test-Procedures for Complex Systems.
Proc. ICSSEA Conf. Paris.

Garbajosa, J., Piattini, M., Mahillo, M.A., Alandes, M.
(2000). Assisting the Definition and Execution of Test
Suites for Complex Systems. Proc. IEEE ECBS’2000.
Edinburgh, April.

Valera, S. (1999). EGSE and Mission Control System.
The PROBA EGSE/SCOS2 Experience. ESTEC.
European Space Agency. June.

181

