EuroPLoP ‘01

Andreas Riping, Jutta Eckstein,
Christa Schwanninger (eds.)

Proceedings of the 6™ European Conference
on Pattern Languages of Programs, 2001

‘UVK'

SRR LR

and to explore the issues of producing, understanaing,
and applying patterns. EuroPLoP 2001 - the sixth European
Conference on Pattern Languages of Programs - was held
in Irsee, Germany, 4™ - 8" July 2001 and this volume
contains the final post-conference versions of the patterns
reviewed in the Writer's Workshops at the conference.

ISBN 3-87940-780-0
UVK Universitatsverlag Konstanz GmbH
www.uvk.de

Andreas Riping,
Jutta Eckstein, Christa Schwanninger (eds.)

Proceedings of the 6'" European
Conference on Pattern Languages
of Programs, 2001

UVK Universititsverlag Konstanz GmbH

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

EuroPLoP <6, 2001, Irsee>

Proceedings of the 6th European Conference on Pattern Languages
of Programs, 2001 { EuroPLoP 2001]. Andreas Riping ... (ed.)

- Konstanz : UVK, Univ.-Verl. Konstanz, 2002

ISBN 3-87940-780-0

ISBN 3-87940-780-0

© UVK Universitétsverlag Konstanz GmbH, Konstanz

Satz: Reproduktionsfertige Vorlagen von den Herausgebern

Druck: Digital Druck AG, Birkach

Einbandgestaltung: multimedia, Elektronic Publishing GmbH, Konstanz,
nach einem Gemilde von George Platts, gescannt von Udo Borkowski

UVK Universititsverlag Konstanz GmbH
Schiitzenstr. 24 - D-78462 Konstanz
Tel.: 07531-9053-0 - Fax 07531-9053-98
www.uvk.de

Write:

Contents
£ Pen
f Patt
Juh
Introduction I :
; Cor.
Thank You..... : m ‘ The
Writer’s Workshop (Architecture & Design) 1 , We
Three Patterns from the ADAPTOR Pattern Language Alan O 'Callaghan.................. 1 3;' Patt
Dependency Structures — Architectural Diagnoses and Therapies g Jua
Klaus Marquardt.... .11 ; Write
Use-Case Controller Ademar Aguiar, Alexandre Sousa, Alexandre Pinto 53 { AT
i
Reflective Persistence Marcario Polo, Mario Piattini, Francisco Ruiz..................... 69 i" Ste;
t
L
Writer’s Workshop (Distribution & Components) 87 i Chr
i Bui
Server-Side Components — A Pattern Language Markus Véltervconierricinnens 87 5: u
y ¥ Patt
Service Abstraction Layer Oliver Vogelcooveevecceeiniiieieisienninisinseesesseseneses 113 é J:tn
Component Architectures for Evolvable XML Architectures Plar
Koen Hendrikx, Erik Duval, Henk OUIVIEu.cueeeereeerevveivrervessrresssossssessssenssssoses 129 3 Tan
Ad Hoc Networking Pattern Language Michael Kircher, Prashant Jain................. 143 B Tho
Lazy Acquisition Michael Kircher rresseeasesnaeane 151 It's’
Busi C t System Th Neumann e ies s .165
usiness Component System Thomas Focus
Writer’s Workshop (Programming & Design) 181 Pat:
C++ Patterns — Reference Accounting Kevlin Henneycccvvvuvvenee. 181 Reth
Java Idioms: Code Blocks and Control Flow Arno Haasecowcuonesrmessssscenns 227 Per:
Coding at the Lowest Level — Coding Patterns for Java Beginners 3 The
JOSEPH BN ..cceunoreevierieececinereranesrressninsanens B Mic

Patterns for Polymorphic Operations dlexander Horoshilovccuvevnrernnee.
Reflective Visitor Pattern Yun Mai, Michel de Champlainouccueeevrerecrininns 299
Message Redirector Michael Goedicke, Gustaf Neumann, Uwe Zdun 317

APLRAC: A Pattern Language for Designing and Implementing Role-Based
Access Control
Saluka R. Kodituwakku, Peter Bertok, Liping Zhao

Writer’s Workshop (Design & User Interfaces)

Permit Based Locking Dietmar SCRUIzovcevccvvniveiniiiiiecseccrensrencsnens 347

Pattern Language for Architecture of Protocol Systems

Juha Pdrssinen, Markkut TUFUNEN.ceocriiiiniiinisissi s serssssnnne 361

Composite Filter Pattern Sherif M. Yacoubiiicnenivnvinrninncicinsnnnen, 387

The Comparand Pattern Pascal Costanza, Arno Haasecoivveivniinnenne 397

Web Usability Patterns Fernando Lyardet, Gustavo ROSSicovececvienncncncnes 413

Patterns for Personalized Web Applications

Juan Danculovic, Gustavo Rossi, Daniel Schwabe, Leonardo Miaton..................... 423
Writer's Workshop (Management & Processes) 437

A Few Patterns for Managing Large Application Portfolios Wolfgang Keller 437

Steps out of Integration Hell — Protocol Interception Wrapper

CRFISHAN WEEE....ocoiirerrectenirertricisssresenissessstesssisssstsaissss s tsssssenssbsrssssssassaarersasenss 455
Building the Cultural Artifacts of the Organization Daniel May...............c.oourvvrnee 459
Patterns for Experiential Learning
Jutta Eckstein, Mary Lynn Manns, Klaus Marquardt, Eugene Wallingford............. 477
Planning the Process of Multimedia Development
Tanya Linden, Jacob L. CyBUulski.................oonvcciieniesnniivniirenniiesnesensissnses 499
Thomas Vestdam Writing Internal Documentation.................uevviecivcensvreiranenns 511
It’s Testing Time — Patterns for Testing Software Manfred Lange e 535
Focus Group and DesignFest Reports ’ 549
Pattern Sequences Neil B. Harrison, James O. Coplien................cvncovvenrivenins 549
Rethinking our Profession Daniel May............coivvioverveniiiniinieeniessnnensieinns 551
Performance Pattern Language Klaus Marquardyccovvvveecviinirivcinn. 555

The Three-Tier Architecture Pattern Language Design Fest
Michael Kircher, Prashant JAinc.coeveovnieinenivcrcsnneeciennseecssnesesenecsenesinns

Reflective Persistence

(Reflective CRUD: Reflective Create, Read, Update & Delete)

Macario Polo, Mario Piattini and Francisco Ruiz
Escuela Superior de Informatica
University of Castilla-La Mancha

Pasco de la Universidad, 4
13071-Ciudad Real (Spain)
mpolo@infcr.uclm.es

Tel.: +34-926-295300 ext. 3730
Abstract

This paper presents a pattern for generating persistence methods in runtime, using the Java

API Reflection, with high levels of maintainability and reusability.

1 Introduction

Literature has been very prdific proposing pattems for mapping an object-oriented system
to a relational database [BRO96], [KEL97), [AMP00], [IBM00]. Two of the problems that

one finds are:

e The tansformation of the class diagram of the system (usually the Domain layer
class diagram) to a relational database schema.

o The assignment of persistence responsibilities to classes, -which depends on the
strategy used for transforming the class diagram to the relational schema.

There are several strategies for both tasks:
o Different relational database schemas can be produced from a same class diagram.

o The implementation of persistent operations has a string dependence on the pattern
used for performing the transformation. Moreover, there are also several strategies
(pattems) to select the classes that will receive persistence responsibilities.

Usually, the programmer needs to write the code for all persistent responsibilities, which

Copyright (C) 2001 by Macario Polo, Mario Piattini and Francisco Ruiz.

O I St AL oy s S T O TP

depends on the pattern used for performing the transformation and on the pattem used to
assign the persistence responsibilities (the persistent class itself, an associated class, etc.).

We propose a pattem that uses Reflection to avoid the need of writing the code for
persistence methods.

Cont’e.“‘ s ERT s B s el I o E

Durmg the development “of anlnformatlon 'System, va rel.atk‘:)ﬁa'l”data;\vbasve' has been :‘bullt
from the class¢s in the Domain layer. For each persistent class in the class diagram a table
has been constructed, using foreign keys to represent all permanent relationships among

classes. The system must be developed in Java.

Problem - g

How are persistence methods assigned to persistent classes? How are persistence methods

Maintenance effort: very low maintenance costs are desirable. The impact of adding,
modifying or deleting fiekds from classes or columns from the database would desirably
be minimum, as well as the time devoted to it.

Reusability: the solution proposed should be directly reusable in any other system, with
a simple “copy and paste”.

Flexibility: the solution proposed should be easily adaptable to work with different
types of transformations from the domain diagram to the relational schema.

Performance versus cost: the proposed solution must not produce delays that are
appreciable by users.

written. Each persistent class should be a specialization of it.

Figure 1 shows a generic class diagram which uses the solution proposed. RCRUD is in
charge of generating all persistence methods in runtime. Note that the superclass (RCRUD)

has no abstract operations.
RCRUD

+ RCRUDQ

+ RCRUD(arD : String) L >[Pridge to tha databasae l

+insertQ

+ delete)

+ update)

<<persistent>> <<persistent>>
A -]
-mPK_primaryey . mPK_primaryKeyColumnA
-m _sField .mPK_primaryKeyColumnB®
.m_anotherFiald . m_aField
. m_anotherField

Figure 1. Generic of use of Reflective CRUD

Participants

.

In Figure 12
e Aand B are two persistent classes, which need the methods in RCRUD.
RCRUD is the class that, thanks to Reflection, generates CRUD methods in runtime for

all persistent classes.
The Bridge to the database is the sclected mechanism to access the database. It could be

a Broker, a direct connection (through an association, for example), etc.

Consequences
1. Facilitates quick development. To make a class persistent, all that is required is to make
it a specialization of RCRUD and to maintain some singular (and common sense)
naming conventions (for example: the mame of the table comesponding to a class is the

same as the name of the class; the names of the fields in every persistent class that -
correspond to primary keys start with “mPK?”; the names of all the other fields start with

) '

Good maintainability, If a class experiences a change in its structure (fields), all that is
needed is the reflection of that change in the comresponding table.

Reusability. RCRUD is directly rcusable in any other project which requires persistence

of objects.

Reflective CRUD combines, in a single class, all the advantages of both the Template
Method and the Pure Fabrication patterns:

e With the Templte Method, all persistence methods are declared in a superclass:
methods, with code common to all classes, are implemented, whereas methods with
code that depend on the concrete class are left as abstract operations. In these
systems, the Domain layer is low coupled to the persistence layer, since only the
superclass has duect knowledge of the database.

With the Pure Fabrication, a class is built for each persistent class, which receives
the responsibilities of persistence. In this manner, persistent classes have only those
responsibilities related to the problem domain, and pure fabrications have only
persistent operations. These classes have high cohesion.

Reflective CRUD implements a Template Method because it contains the definitions of
all persistence methods, but with the additional advantage that all of them are concrete.
It has ako a Pure Fabrication, because all persistence operations are delegated to an
associated class (the superclass): therefore, domain classes are not responsible of their
persistence, what allows to keep high cohesion of domain classes.

Eﬁnmpl_e

Figure 2 shows a litle class diagram which represents the domain layer obtained when

modelling a problem. If all these classes need persistence, we can give it to them by doing
all of them specializations of RCRUD, as Figure 3 shows.

In Figure 3,

Person

.mPKName :STing
. mAddrass : String

Vahicle

. m PKRol : String
1 - mOiesel :boolean

Diving

mDate : Date
mKilometers :long

Employes

Studant

-mPKSSN :$tring
. mSalary:double

. mCourse :int

Figure 2. A Domain class diagram.

RCRUD

Person

-mPKName : String
-mAddress : String

+ RCRUDO

+ RCRUD(ard : String)
+ insernt()

+ delete ()

+ update)

7

D riving

-m Date : Date
- m Kilom eters :long

every persistent class inherits persistence operations from the RCRUD class,
which is in charge of its generation. When an object desires, for example, to be inserted, it
executes the insert method, which is completely defined in RCRUD.

Vehicle

A

X

Employea

Student

-mPKSSN : String
-mSalary:double

-mCourse

tint

Figure 3. Adding persistence to all classes.

-m PKRoll : String
-mDiesel:boolkan

Variants ™~

The Domain diagram is the basis for constructing the relational schema. There are several

strategies for transforming a class diagram to a relational schema:

1. To create a table per class, and use foreign keys to represent all permanent
relationships among classes (inheritance, associations and aggregations). Using this
type ofb transformation, the relational schema obtained from the class diagram in
Figure 2 would be that shown in Figure 4. '

Figure 4. Relational schema obtained constructing a table per class.

2. To use the “One inheritance path, one table” pattern, which reduces each path in an
inheritance tree to a single table. Figure 5 i the relational schema obtained
applying this transformation to Figure 2.

Figure 5. Relational schema obtained fiom the “one inheritance path, one table” pattern

3. To use the “One inheritance tree, one table” pattern, which reduces a full inheritance
tree to a single table, as it is shown in Figure 6, which is the transformation of
Figure 2 with this pattem.

Figure 6. Relational schema obtained with the “One inheritance tree, one pattern”
4. To use different combinations of the previous solutions to transform a same class
diagram.
Obviously, methods in RCRUD must have different implementations depending on the
type of transformation. For example, when a new instance of Student desires to be inserted
in the database:
1) In the first case Figure 4), it must be firstly inserted in Person, and then f Student,
probably through a transaction.
; ‘ 2) In the second case (Figure 5), it may be directly inserted in the Student table.
3) In the third one Figure 6), it must be inserted in the Person table, leaving nulls the
columns of Employee.

mplementation

This section provides some comments and explanations on the first variant of RCRUD: in
this one, there exists a table per class, and each class is responsible of its persistence. We
begin presenting a constructor for building empty objects, a - generic “materializer” (for
building objects from records), and we conclude with the methods insert, delete and update.

The full implementation of the three variants of RCRUD illustrated ‘in the previous
sections, as well as some examples can be downloaded from the files yetl.zip, yet2.zip and
yet3.zip at hitp//www.inf-cr.uclm.es/www/mpolo/yet/

e The empty constructor
The empty constructor must assign a default value to each field in the object (for example,
the zero value 10 int and long fields, new String() t0 string fields, etc.).

RCRUD() {

Field fields[]=this.getClass() .getDeclaredFields();
for (int i=0; i<fieldNames.size(); i++)

try {
Field fafields[i);
if (isvalid(f))
f.set (this, Empty(f));

}

catch (Exception e) {}

Thlg method retrieves through Reflection all the fields in the class, An "empty” or default
values is assigned to each "valid" field. A field is "valid® if its type is a Java basic type.
With this, we avoid to deal with fields whose type is, for example, a class defined in the
domain of the problem (although it is also possible to materialize this kind of fields also
with Reflection).

The Empty(rield) method is the operation in charge of assigning the empty, default value,
depending on the type of the field, which can be retrieved through the getType () method
provided in the Reflection APL In the implementation of RCRUD that we are currently
using, the following is the body of Empty:

private Object Empty(Field f£) {

if (f.getType().toString().compareTo("class java.lang.Long")==0)
return new Long(0)}; else

if (f.getType().tostring().compareTo("class java.lang.Integer")==0)
return new Integer(0); else

if (f.getType().toString().compareTo("class java.lang.Double") ==0)
return new Double(0.0); else

if (f.getType().tostring().compareTo("class java.lang.Boolean")==0)
return new Boolean(false); elge

if (£.getType () .toString() .compareTo ("class java.lang.String®)==0)
return new String(); else

if (f.getType().toString().compareTo("class java.util.Date")==0})
return new Date(); else

if (£.getType () .toString() .compareTo("class java.util.vVector")==0)
return new Vector();

return new Object();

}
¢ Generic materializer: the constructor with a parameter
This constructor is used to build instances from the information saved in the database,
values of the fields which correspond to columns which are part of the primary key. To
build, for example, an Employee whose name is "Maquete" and has 13203881 as SS

number, we need to write the following sentence:

String args[]={"Maqueter, "13203881%};
Employee e=new Employee (args) ;

In the body of this constructor, a select instruction must be generated and executed on the
database. Afterwards, the value of each column retrieved must be assigned to each field of
the object which is being materialized.

The construction of the select instruction is quite easy (see lines 3 and 4 in the following
code): as there is a comespondence between the name of the table and the name of the class,
the table in the From clause is the name of the class (or the name of the class with some kind
of transformation). Then, the method called in line 4 QistofPksAndvalues(string(}}) is in
charge of generating the wnere clause; it must look for all the fields in the class whose name
starts with "mPK", trim this prefix (to produce the string Mame~ instead of wPKName=) and
concatenate the elements in the array. Possibly, some kind of marks must be also generated
depending on the type of the field (for exampl: Name='Maquete' with quotation marks, and

SsN=13203881 with none).

1 RCRUD (String PKValues[]}) throws Exception {

this();
3 String SQL="Select * from " + this.getClass().getName() + * where " +
4 1listOfPKsAndvalues (PKValues} ;

ResultSet raBroker.bd.createStatement () .executeQuery(SQL};
if (r.next()) {

Vector fieldNames=listOfFields(this.getClass(});

for (int i=0; ic<fieldNames.size(); i++)

9 Pield £=
this.getClass () .getDeclaredField((String)
fieldNames.elementAt (1)) ;

try {
10 Object o=valueOf (f, r, i+l);
11 f.set (this, o};

}
catch (Exception j) {}

}
}

When the instruction has been retrieved in a Resultset, its columns must be assigned to the
valid fields (see the notion of "valid field" in the empty constructor section) in the object,
which is done in lines 10 and 11.

® The Insert method.

This method must generate a SQL instruction as the one shown in the left side of next table,
for which the code in the right side can be used:

Ingert into String SQL=~Insert into * +
the_name_of the_table this.getClass () .geLName () +
{columns) * (" + getListOfColumns() + ") * +
values “values” +

(values_of_fields} " (* + getListOfvalues() + “)*;

Table 1. Generation of the Insert method.

As it is seen, the name of the class is used as name of the table to insert the record. The list

of columns is extracted with the getListofcolums method, which has the following
implementation:

String getListOfTableColumns() throws Exception {
String fieldName, result=new String(};
Field f£;
Pield fields();

fields=this.getClass () .getDeclaredFields () ;
for (int i=0; i<fields.length; i++)
f=fields (il
if (isvalid(f.getType().toString(}})) {
fieldName=£f.getName () ;
fieldName=trim(fieldName) ;
result+="{" + fieldName + "],";
}
}

return result.substring{(0, result.length()-1) ;

The list of values is retrieved as a string with the getListofvalues method. Some values

must be set between quotation marks, which is done with marks (string, string) method:

String getListOfValues() {
String fieldClass, fieldValue, result=new String(};
Field f£;
Field fields[};

try {
fields=this.getClass() .getDeclaredFields();
for (int i=0; i<fields.length; i++) {
f=fields(i);
if (isValid(f.getType().toString(})) {
fieldClass=f.getType () .toString();
fieldvalue=f.get (this) .toString();
result+=marks (fieldvalue, fieldClass)+",";

}

catch (Exception e} {}
String result2=result.substring(0, result.length()-1);
return result2;

0

b

B

Once the nsert instruction has been generated, it is executed against the database.

e The Delete method
This method must generate and execute a SQL instruction to delete the current object from

the database. It will be a pelete instruction which removes from the database the record
whose primary key coincides with the fields of this object whose name starts with "mPK".

public int Delete() throws Exception {

String SQL="Delete from " + this.getClass().getName() +
* where " + listOfPKsAndvalues();
return Broker.bd.createStatement () .executeUpdate (SQL) ;

}
The 1istofpksandvalues() method retrieves a string with the format (Name)='Maquete' and
SsN=13203881. It operates in the same way that 1istOfPKsAndvValues (String(])), which was

commented in he Generic materializer section, but in this case it acts on the current object,

not on the array passed as parameter.

e The Update method

This method has a special characteristic which distinguishes it from the previous ones: it
must generate an Update instruction which assigns to the columns of an existing record the
values of the fields in this object, but must compare with the old values of the primary key.
For example: let us suppose that there is in the database the following person:

Name SSN Age .
Maguete 13203881 3

We can build an object from this record and then, maybe its SSN is changed:

p.mPKName="Maquete"; p.mPKSSN=2801234; Age=3;

To save this record in the database, the following instruction must be generated:
Update Person set
Name='Maquete', SSN=2801234, Age=3 € Current values
where
Name="Maquete” and SSN=13203881 € 014 values
See that the set clause-uses the current values of the record, but the where clause looks for
the previous values of the primary key in the database (otherwke, the record would not be

-found). Therefore, a method to keep the initial values of the object/record is needed, in

order to do the following generation of the where clause. We save the initial values in the
olapks class variable of RCRUD with the following method:

public void saveOldpks () {
01dPKs=1istOf PKsAndvalues () ;

It calls fo 1istofPKsandvalues(), which has been commented in the previous section.
saveoldpks is executed when the user decides to modify the object which is being edited:
for example, when he/she press the update button on the Person screen; then, when the data
have been changed and the save button is pressed, the update method, which has the
following body, is executed:

public int Update() throws Exception {
string fieldClass;
string fieldvalue;
string SQL="Update " + this.getClass() .getName () + " set "
Vector fieldNames=1istOfFields(this.getClass(});

Ty .
fér (int i=0; i<fieldNames.size(); i++) {
Field £=
this.getclass().getDeclaredField((Stting) fieldNames.elementAt (i));
try { fieldValue=f.get (this).toString(); }
catch {Exception e) { fieldValue=snull; }
if (fieldvalue!=null) {
fieldClass=f .getType () .toString(};
SQL= SQL + " (" + trim(f.getName()) + "l=";
SQL=SQL+marks (fieldvalue, £.getType() .toString()) + ",";
}
}

catch (Exception e) { }

SQL=5QL.substring (0, SQL.length(}-1);

SQL= SQL + " where " + this.0ldPKs;

return Broker.bd.createStatement () .executeUpdate (SQL) ;

}
Related patterns

The CRUD (Create, Read, Update & Delete) pattern of Yoder et al. [YJD98] determines
that the CRUD methods are the minimal set of operations required to provide persistence to

objects.

The Template Method pattems is described by Gamma et al. in [GHIV95]. The Pure
Fabrication pattem is detailed in [LAR98].

Patterns “One class, one table”, “One inheritance path, one table” and “One inheritance

tree, one table” are used for describing three of the variants of RCRUD. These patterns are
described by Keller [KEL97).

1)

2

3

We have used the first variant of RCRUD in the development of an industrial
project which involves 139 classes, 42 with persistence in the database. The first
versions of the application were developed wsing the Joec:opec bridge with the
Microsoft Access database. Afterwards, and due to the necessity of incorporating
stored procedures, possibilities of auditing and more security restrictions, we
selected the SQL Server 7 database nunning on Windows NT Server. Furthermore,
as the program runs on several platforms (PC and Macintosh), we decided to wse a
direct connection to the database, with no use of the Joec:opec bridge, through the
AveConnect driver, which 100%
(http://www.avenir.net/products/aveconnect.htm).

In both cases, RCRUD has operated fine. Only a little modifications on its code
have been done, but due to the change of database, and not to the change of
accessing way: as the voolean data type in Access is bit in SQL Server, instead of

is pure Java

inserting or updating true or false, a conversion to the munbers 1 or 0 must be
done. For example:

e Matve eatonaccase s -comaerarnteati ooy ¢

=T

} else
The use of RCRUD to access members in runtime does not produce any appreciable
delay: all the persistence methods are executed quickly; also the construction of
objects from records (which is the operation with more access to metadata) operates
very well.
The RCRUD class has been also used in other projects, as EasyTest, a single
program to generate randomly and to correct test exams. EasyTest, including its
source code, is available at http://www.inf-cr.uclm.es/www/mpolo/easytest
Ambler describes a persistence layer with some classes in charge of generating
CRUD methods (sece [AMBO0), specially pages 9, 10 and 19). However, the
proposed framework uses a wide set of classes that saves the needed information to

generate the methods in a persistent storage, instead of accessing dynamically to

the object members.

Other' authors are involved in projects or researches that use metadata, although no
explicitly in the same context of RCRUD. Joe Yoder reports of some works at
http://www joeyoder.com/Research/metadata/

In any case, the use of Reflection and metadata are incipient themes that produce
many interest in the scientific and practitioner community: in fact, also Joe Yoder
reports on the celebration of several workshops related in some conferences, as
ECOOP and OOPSLA.

3 Additional benefits of RCRUD and of the use of Reflection

In the industrial project described in the first point of the “Known uses”, a screen was
designed for each persistent class. The structure and behaviour of these screens is very
similar (Figure 7). Due to this similarity, a generic, abstract screen can be designed, with
quite all the structure functionality on it: common buttons, menus and several methods. We

have called Framercrup to this screen. It has a reference to a generic rcrub object.

Figure 7. Structure of screens for persistent classes.

The response to the selection of the wew button (or the wew option in the menu bar) is to
"empty" the screen fo create a new object that, later, will be saved in the database. To
empty the screen, the idea that appears more quickly is to declare an abstract method in
FrameRCRUD and to implement it in the specializations; however, as a screen is a class and it
is possible to access in runtime to the members of a class, we can write a method in
FramercrRUD that checks the type of each widget, writing the empty string if it is 8 TextField

OF TextArea, setting false as state if it is a CheckBox, and so on. The Template button has the

same behaviour than New, but in this case, the screen is not emptied. Both buttons call then
to the enable (boolean) method, which allows the modification of the data in the screen.

Puerta et al. [PEGM94] and Konglathu [KON98] have studied the relationship between the
Domain and Presentation layers more in depth, in order to automate the generation of user
interfaces. However, the definition of both RCRUD and its comresponding FrameRCRUD
allows to generate the user interface with less effort than in these works.

The structure of an application built through RCRUD and rramercrup is shown in Figure 8.

Bodies of its methods appear in Table 2.

private void template() {
mOperation= KNEW;
enable{true);

private void modify{() {
mObject . saveOldrks () ;

wOperation=

private void exit() {
dispose () ;

} KMODIFY;
enable (true) ;

}

private void delete(} {
DialogConfirmation dw=
new DialogConfirmation
(this, “Attention", true);
d.setVisible{true);
if (d.mOption=ed.YES) {

private void save() {
enable(false);

try
// loads mObject with the data in the widgets

reload():

if (mOperation==kNEW) try |
mObject .Insert(); mObject .Delete();
else empty () ;

mObject .Update() ;
catch (Exception e) {

}
catch (BException e) { Dialogb§:; frro
Dialog d=new DialogEBrror (this, ““:th;’ °ggr:'°:_
"Error saving", true, e.toString{}); true ’ *

d.setVisible (true); e.toString(});
enable {true); d2.setVisible (true);
} d2.dispose();

)d.dlspose() :

Table 2. Rody of methods in FrameYet.

Presentation layer Domain layer Persistence layer

#mObject
FrameRCRUD »{ RCRUD DBBroker
mQperation:int ZK

[newl) |

template()
modify()
exit() Database
save() Management
delete() System
enable(boolean)
empty()
reload()

load()

ll\ -mWorker

FrameWorker Worker

A mPKName:String
mOperation:int mPKNIF-long
reload() mTelephone:String
load()

Figure 8. Structure of applications using RCRUD.

4 Conclusions and future trends

Systems developed with RCRUD produce pefsistent classes in a very easy way: to do
persistent a domain class, the programmer only needs to write the fields of the class (taking
into account some name conventions) and do it a RCRUD’s child. None persistence
method must be written in the class, since all of them are inherited from RCRUD. In this
way, persistent classes have a high cohesion, since all their methods are related to the
domain problem. The coupling added to the system is very low: every class has only the
"filial" relationship with RCRUD, plus those relationships (associations and aggregations)
related to the problem. Moreover, RCRUD is the only class which has knowledge of the
database (in our examples and industrial applications, via a database broker). In this
manner, Domain classes do not access to the persistence mechanisms.

As it is seen in Figure 8, the applications we have developed do not use observers to refresh
the status of the presentation layer, since they are refreshed every time they get the focus.
Currently, we are working on the incorporation of a generic observer to the RCRUD clﬁss.

B ol STT A e

A %y

A o R g0 i G PN e Ry VR RTINS T . SR R T S — g

Also, from the migration to the new database management system to use stored procedures,
we saw as a possibility the creation and execution in runtime of stored procedures to do the

persistent operations.

5 Acknowledgments

The authors want to thank Wolfgang Keller, our shepherd, for all the readings of the
previous versions of this paper. Without him, this paper would never have been a pattern
paper.

This work is part of the DOLMEN project (Distributed Objects, Languages, Methods and
Environments), which is partially supported by FEDER with number TIC2000-1676-C06-
06.

6 References
[AMBO00] Ambler, SW. The Design of a Robust Persistence Layer. Ronin International.
Available at (April 6, 2001): http://www.ambysoft.com/persistenceLayer.pdf

[BRO96] Brown, K. and Whitenack, B. Pattern Languages of Program Design, vol. 2.
Reading, MA: Addisson-Wesley.

[GHIV95) Gamma, E., Helm, R, Johnson, R. and Vlissides, J. Design Patterns. Reading,
MA: Addisson-Wesley.

[IBM0O] IBM. Object to relational table mapping techniques with persistence. Visual Age
Developer Domain. Available at (April 6, 2001):

http://www.software.ibm.com/vad nsf/Data/Document3 124

[KEL97]). Keller, W. Mapping objects to tables. A pattern language. Proceedings of the
1997 European Pattem Languages of Programming Conference, Irrsee, Germany.

[KON98) Konglathu, J.A. Automated generation of user interfaces. Available at (December
26, 2000): http-//www.cs.unc.edw~konglath/pw/ch/

[LAR9S8] Larman, C. Applying UML and Patterns. Upper Saddle River, NJ: Prentice-Hall

[PEGM9%4] Puerta, AR, Erksson, H, Gemnari, JH. and Musen, M.A. Model-based
automated generation of user interfaces. Proceedings of the 12th National Conference on

Artificial Intelligence, pp. 471-477. Seattle, WA, USA.

fYDJ98] Yoder, JW., Johnson, RE. and Wilson, QE. Connectmg Business Objects to
Relational Databases. Available at (April 6, 2001):

http:/fwww joeyoder.com/Research/objectmappings/Persista.pdf

AT TS U i S o

