*

ineering

Organized by

DIE

Y Ljﬂ

ANALES JALIG - =2
1SS 1600- 114 : W2 10
Facultad Regional Santa te
Universidad Teenolosiea Nacional

ol
-
a8
L
=
Qv
=
=
o
o9
<
-
z
E
w2
o
Q,
=
e
P
Q
£
e
-
L
o0
Pt
<

Sulvsorie
NI Sonpesiui el Solfbsare bagimecning
ISSN ot o

31 JAIIO

31 Argentine Conference on Computer Science
and Operational Research

Argentine Symposium on
Software Engineering

Proceedings

Edited by:

Dra. Silvia Gordillo, Universidad Nacional de La Plata,
Facultad de Informatica

Dra. Claudia Marcos, Universidad Nacional del Centro, FCE

Santa Fe, Argentina
September 9-13, 2002

Organized by:
SADIO, Sociedad Argentina de Informatica e Investigacién Operativa

Uruguay 252 2° “D” (C1015ABF) — Ciudad de Buenos Aires
Tel.: 4371-5755 Tel./Fax: 4372-3950
E-Mail; jaiio@sadio.org.ar / sadio@speedy.com.ar
Web Page: www.sadio.org.ar

ASSE 2002

Symposium Chairs

Dra. Silvia Gordillo
LIFIA, Universidad Nacional de La Plata, Argentina

Dra. Claudia Marcos
ISISTAN, UNICEN, Argentina

Program Committee

Len Bass
Carnegie Mellon University, USA

Jorge Boria
TeraQuest, USA

Marcelo Campo
ISISTAN, Tandil, Argentina

Paul Clements
Carnegie Mellon University, USA

Mohamed Fayad
Universidad de Nebraska, USA

George Fernandez
School of Computer Science and Information Technology, Australia

Manuel Kolp
IAG, University of Louvain, Belgium

Robert Laurini
INSA Lyon, France

Horacio Leone
Universidad Tecnolégica Nacional, Argentina

Jim McGovern
Director of IT - Facuity of Applied Science - RMIT, Australia

Martina Marre
- Universidad de Buenos Aires, Argentina

i

Alberto Mendelzon
Universidad de Toronto, Canada

Eduardo Miranda
Ericsson Research, Canada

John Mylopoulos
Universidad de Toronto, Canada

Oscar Pastor
Universidad Politécnica de Valencia, Espana

Alain Pirotte
IAG, University of Louvain, Belgium

R. Tom Price
Instituto de Informéatica UFRGS, Brasil

Daniel Yankelevich
Pragma Consuliores, Argentina

Inji Wijegunaratne
IT Architecture, Australia

Victor Braberman. Universidad de Buenos Aires.
Andres Diaz Pace. ISISTAN, UNICEN.
Juan V. Echaglie. Umai S.A.

Hugo Estrada. Universidad Politécnica de Valencia.
Pablo Mocciola. Pragma Consultores, Universidad de La Plata.
Marcelo Ochoa. UNICEN.

Vicente Pelechano. Universidad Politécnica de Valencia
Angel Perez Puletti. Universidad de Buenos Aires y Baufest.
Claudia Pons. LIFIA, Universidad Nacional de La Plata.

Natalia Romero. Pragma Consultores.

111

Gustavo Rossi. LIFIA, Universidad Nacional de La Plata.
Juan Sanchez. Universidad Politécnica de Valencia.
Alfredo Teyseyre. ISISTAN, UNICEN.
Alejandro Vaisman. Universidad de Buenos Aires y Universidad de Belgrano.
Sabrina Vazquez Soler. Pragma Consultores.

Alejandro Zunino. ISISTAN, UNICEN.

v

31 Argentine Conference on Computer Science
and Operational Research

Under the auspices of:

Ministerio de Educacién, Ciencia y Techologia,
MECyT - Presidencia de la Nacion, Res. 337

Secretaria de Ciencia, Tecnologia e Innovacién Tecnologica,
SECyT, Presidencia de la Nacion, Res. 075

Declaracién de Interés Provincial, Provincia de Santa Fe,
Decreto 280 08/03/02

Facultad de Ciencias Econémicas, UNL, Res. R 023/02
Facultad de Ingenieria Quimica, UNL, Res. Cons Directivo 073/02
Universidad Nacional de Jujuy, Res. Rector 071/02
Facultad Regional Avellaneda, UTN
Facultad Regional Bahia Blanca, UTN, Res. C.A. 58/02
Facultad Regional General Pacheco, UTN, Res. C.A. 60/02
Facultad Regional Mendoza, UTN , Res. Decano 043/02
UTN, Res. Rectorado 291/02, Declarado de interés institucional.

Facultad de Ingenieria, Universidad Nacional de La Pampa,
Res. Consejo Directivo 62/02

Universidad Catolica de Santa Fe, Res. Rector 5770/02
Facultad de Ciencias Exactas, U.N. del Centro de la Pcia de Bs. As.
Universidad FASTA

Facultad de Economia y Administracion {(FaEA)
Universidad Nacional del Comahue

Sponsored by:

INSTITUTIONS
COMPANIES
PROTECTOR

Cisco Srevems Microsoft
ORACLE

.
Bl RO ERISG THE
INTERNET GENERATEON"

ASSOCIATE

Siemens ltron
Business Services

@Sun

microsystems

(AL

ADHERENT

S?E’:’C'F':'s FUNDACTION
YPF

TNECR CODRRATYA OF SEGURCS RATADA.

lntegral Insumasj

flvision inFURNJ!!(i
.« B8

el prups cospevative CPT

R
Coopeiativas Unidas Lida

vi

SADIO

President

Jorge Clot

Vice President

Gabriel Baum

Treasurer
Mario Weber

Co-Treasurer

Arnoldo Palma

Secretary

Juan Carlos Frankel

Committee Members
Marcelo Frias
Basilio Jezieniecki
Irene Loiseau

Oscar Sartori

Substitute Committee Members
Gabriela Henning

Jane Pryor
Auditors

Clara Fuks

Luis Correa

vil

Preface

Welcome to the Third Symposium on Software Engineering (ASSE2002), which
takes place within the framework of the Argentine Conference on Computer Science
and Operational Research (JAIIO2002).

Argentina is undergoing the worst crisis in its history. As researchers, educators, and
industry practitioners, we feel a great responsibility in responding to this situation by
contributing more than ever to the development of our discipline. We really hope that
this may be possible in forums such as this Symposium, through the presentation and
exchange of ideas and experiences.

The objective of the Symposium is to provide a context in which researchers,
educators, professionals, and industry practitioners present and discuss advances in the
area of software engineering. This year, the Program Committee has accepted 14 papers
and 3 short papers that will be presented by researchers from Argentina, Brasil, Spain
and USA. There will also be conferences and tutorials by professionals and researchers
from Argentina and USA, describing their experiences and ideas about the present and
the future of Software Engineering. These presenters include Alejandro Bianchi
(Liveware Argentina), Alvaro Mendarozqueta (MACS - Motorola Argentina Center for
Software), and a teleconference by Bill Riddle (TeraQuest Metrics Inc).

We wish to acknowledge the valuable contribution of the Program Committee
members and additional referees, who provided their expertise to the review process;
many thanks to all of them.

Last but not least, we would like to express our heartfelt thanks to the authors and
attendees for their support and contributions; their effort has made the realization of
ASSE possible despite the current difficulties.

Silvia Gordillo and Claudia Marcos

Symposium chairs

viii

Table of Contents

Contributed Papers

Smartweaver: Aspect-Oriented Development using the Smartbooks Approach
J. Diaz Pace, M. Campo, and F. TrilniK. ... e rrreccrnen e 1

The Ubiquitous Broker Environment {TUBE): An Architecture for Protocol-Level
Systems Integration
R. Slamkovic, J. McGovern, and G. Femnandez.c..o.oii i 22

AXIS — a data exchange architecture among heterogeneous data sources using
XML documents
S. Mergen, M. Keller, and E. Kroth. ... e een 32

Estimating Dynamic Aspects of Distributed Software Quality
P. Rossi and G. FEMMaANAEZ.iiiiiiiiiii i e e ee e st e e e e e e e e e e s e e srnnanes 46

Model Refinements in the Object Oriented Software Development Process
G. Pérez, R. Giandini, and C. PoONS. ..o oo et e et et e e e e er s 60

Empirical Studies for Validating Class Diagram Metrics
M. Genero, M. Piattini, and C. Calero. ... oot 74

Tools for the Implementation of LEL and Scenarios (TILS)
G. Gil, D. Arias Figueroa, and L. GiMSON. ..cc...cciivrrieiiie et ae et e e e s s e e s 87

A web-based reflective architecture for process support environment
M. Yamaguti and R. PriCe. ... e e et ae e 1

(V]

Guidelines for applying XP in a CMM Level 5 organization

P. Maller, C. Ochoa, and A. Ruiz de Mendarozqueta.ocooveieeeereeereeeeeeeresennn 117
An Extension of UML Activity Graph meta-model based on the Workflow meta-
model

E. Acosta, M. Uva, A. Grando, D.Riesco, and N. Debnath. 130
Conceptual Design of a Temporal Data Warehouse

CoNell and J. Ale. ..o et 143
A Taxonomy of the Quality Attributes for Distributed Applications

J. Pérez-Martinez and A. SIerra-AlONSO.........oivi ittt e e e 157
A Prototype for Data Integration between Case Tools

M. Pereira and M. YamaguUli.........oc..co e 168

Using design patterns for a compiler modeling for posing disjunctive
optimization programs
J. Giland A. VecChietti. ... e 180

Short Papers

AgEnD: Agility Enhanced Development
M. Schenone and S. VIllagra.ooooiiiiiiiiiiee e 194

Applying use cases in the real world: A case study
S VIIAGIA. ittt et 204

Software Maintenance in Argentina: 2001 Status
AL SIIDEIMAN. .o 216

Invited Falks and Tutorials

Knowledge Management: An opportunity for the industrial production of
software
AL BIANCRI Lo et e 226

CMMI, is it a new Mode! or is the CMM evolution?
AL Ruiz de MendarOzqUeta. ...t 228

Just-in-Time Process Documentation
BRI . i e et a e e e e 230

Argentine Symposium on Software Engineering
Empirical Studies for Validating Class Diagram Metrics

Marcela Genecro, Mario Piattini and Coral Calero

Alarcos Research Group
Department of Computer Science, University of Castilla-La Mancha.
Paseo de la Universidad, 4, 13071, Ciudad Real (Spain}
{Marcela.Genero, Mario.Piattini, Coral.Calero}@uclm.es

Abstract, The quality of class diagrams is crucial for all later design work and could
be a major determinant for the quality of the software product that is finally delivered.
In order to assess class diagram quality in an objective way it is necessary to have
quantitative measurement instruments. This paper presents a set of metrics which
measure UML class diagram structural complexity based on the use of UML
relationships. Also it summarizes two controlled experiments carried out in order to
corroborate if those metrics are related with UML class diagram maintainability, The
findings obtained trough the experimentation reveal that most of the metrics we
proposed (NAssoc, NAgg, NaggH, MaxHAgg, NGen, NgenH and MaxDIT) might be
good indicators of class diagram maintainability. We cannot, however, draw such firm
conclusions regarding the NDep metric.

1. Introduction

In the development of QO software, the class diagram is a key early artefact that lays the
foundation of all later design and implementation work. Therefore focusing on class
diagram quality, early in the development life cycle, may help software designers build
better object-oriented (OO) software. It is in this arena where software measurement plays
an important role, because the early availability of metrics contributes to class diagram
quality evaluation in an objective way avoiding bias in the guality evaluation process.
Moreover, metrics provide a valuable and objective insight into specific ways of enhancing
each of the software quality characterstics.

Given that maintenance is (and will continue to be) the major resource consumer of the
whole software life cycle, maintainability has become onc of the software product quality
characteristics that software development organisations are more concemed about.
However, we are aware that maintainability is an external quality attribute that can only be
measured when the QO software product is (nearly) finished, Therefore, it is necessary to
have early indicators of such qualities based, for example, on the structural properties of
class diagrams (Briand et al., 1999).

Most of the existing OO measures (Fenton and Pfleeger, 1997; Henderson-sellers, 1996;
Melton, 1996; Zuse, 1998) are related to measures applied to code or to detailed design,
hence they provide informaticn too late to lead us to build easier to maintain OO software.
So, after a thorough review of some of the existing OO measures, applicable to class
diagrams at high-level design stage (Brito e Abreu and Carapuga, 1994; Chidamber and
Kemerer, 1994; Lorenz and Kidd, 1994; Marchesi, 1998) we have proposed (Genero et al.,

74

Argentine Symposium on Software Engineering

2000; Genero, 2002) a sct of UML class diagram structural complexity measures based on
the use of UML relationships (associations, generalizations, aggregations and
dependencies), see table 1, where also, traditional metrics such as Number of Classes,
Number of Methods and Number of Attributes are included. These metrics have been
developed in a methodological way which consists of three main steps: metric definition,
and theoretical and empirical validation (Calero et al., 2001). Even though the three steps
are relevant, in this paper we shall only deal with the empirical validation. More details on
the definition and theoretical validation can be found in (Genero, 2002).

As the proposal of metrics is of no value if their practical use is not demonstrated
empirically (Basili et al., 1999; Fenton and Pfleeger, 1997; Kitchenham et al., 1995;
Schneidewind, 1992), either by means of case studies taken from real projects or by
controlled experiments, our main motivation is to investigate, through experimentation, if
the metrics we proposed for UML class diagram structural complexity (internal quality
attribute) are related to class diagram maintainability (cxternal quality attribute) sub-
characteristics: understandability, analyzability and modifiability (1SO, 1999)". If such a
relationship exists and is confirmed by empirical studies, we will have really obtained early
indicators of class diagram maintainability. These indicators will allow OO software
designers to take better decisions early in the OO software development life cycle, thus
contributing to the development of better quality OO software.

Table 1. Metrics for UML class diagram structural complexity

.Metric"name) "_“Ii/letric definition

‘ " NUMBER OF ASSOCIATIONS The total number of associations.
| ‘

NUMBER OF AGGREGATION The total number of aggregation relationships within a class
(NAgg) i diagram (each whole-part pair in an aggregation
- | relationship).]
NUMBER OF DEPENDENCIES | The total number of dependency relationships.
o (NDepy
NUMBER OF GENERALISATIONS | The total number of generalisation relationships within a
{NGen) class diagram (each parent-child pair in a generalisation
o | relationship).)
NUMBER OF AGGREGATIONS | The total number of aggregation hierarchies (whole-part
HIERARCHIES (NAggH) | structures) within a class diagram,
NUMBER OF GENERALISATIONS | The total number of generalisation hicrarchies within a class
HIERARCHIES (NGenH) diagram. B o
MAXIMUM DIT It is the maximum of the DIT (Depth of Inheritance Tree)
{MaxDIT) values obtained for cach class of the class diagram. The DIT
value for a class within a generalisation hierarchy is the
B _longest path from the class to the root of the hierarchy.
MaXIMUM HAGG It is the maximum of the HAgg values obtained for each
(MaxHAgg) class of the class diagram. The HAgg value for a class

' Even though understandability has not been considered as a maintainability sub-
characteristic by the 1SO 9126 (I1SO, 1999) we include it because several works related to
software measurement consider understandability to be a factor that influences
maintainability (Fenton and Pfleeger, 1997; Briand et al., 2001; Harrison et al., 2000).

75

Argeniine Symposium on Sofiware Engineering

— _ | class to the leaves.
NUMBER OF CLASSES (NC) | The total number of classcs.

- within an aggregation hierarchy is the longest path from the

‘__
|
’,

NUMBER OF ATTRIBUTES (NA) | The total number of attributes.

NUMBER OF METHODS (NM) * The total number of methods

This paper is organized as follows: In sections 2 and 3 we summarize how we carried out
the two controlled experiments for empirically validating these metrics. The comparison of
the results obtained in both experiments comes in section 4, and finally and in section 5
some conclusions are presented together with future work.

2 First Experiment

In this section we describe the first experiment we have carried out to empirically validate
the proposed mcasures as early maintainability indicators. We have followed some
suggestions provided by Wohlin et al. (2000), Perry et al. (2000) and Briand et al. (1999}
on how to perform controlled experiments. To describe the experiment we use (with only
minor changes) the format proposed by Wohlin et al. (2000) comprising the following main
tasks: definition, planning, operation, analysis and interpretation, validity evaluation and
presentation and package.

2.1 Definition

Using the GOQM tempiate {Basili and Rombach, 1988) for goal definition, the goal of the
experiment is defined as follows:

Analyse UML class diagram structural complexity metrics

For the purpose of Evaluating

With respect to the capability to be wused as class diagram
maintainability indicators

From the point of view of OO0 Software designers

In the context of Undergraduate Computer Science students and

professors of the Software Engineering area at
the Department of Computer Science at the
University of Castilla-La Mancha

76

|
|
|

Argentine Symposium on Software Engineering

2.2 Planning

Context selection. The context of the experiment is a group of undergraduate students and
professors of the Software Engineering area, and hence the experiment is run off-line (not
in an industrial software development environment), The subjects were seven professors
and ten students enrolled in the final-year of Computer Science at the Department of
Computer Science at the University of Castilla-La Mancha in Spain. All of the professors
belong to the Softwarc Engineering area.

The experiment is specific since it is focused on UML class diagram structural
complexity metrics. The ability to generalise from this specific context 1s further elaborated
below when discussing threats to the experiment, The experiment addresses a real problem,
1.e., what indicators can be uscd for the maintainability of class diagrams? With this end in
view it investigates the correlation between class diagram structural complexity metrics and
maintainability sub-characteristics.

Selection of subjects. The subjects are chosen for convenience, 1.e., the subjects are
undergraduate students and professors who have experience in the design and development
of QOIS using UML.

Variable selection. The independent variable is the class diagram structural complexity.
The dependent variables are three maintainability sub-charactenstics: understandability,
analyzability and modifiability.

Instrumentation. The objects were UML class diagrams. The independent variable was
measured through the metrics we proposed. The dependent variables were measured
according to the subject’s ratings.

Hypothesis formulation. We wish to test the following hypotheses:

— Null hypothesis, H: Therc is no significant correlation between the structural
complexity metrics (NC, NA, NM, NAssoc, NAgg, NDep, NGen, NAggH, NGenH,
MaxHAgg, MaxDIT) and the subject’s rating of three maintainability sub-
characteristics, such as understandability, analyzability and modifiability.

— Altemnative hypothesis, H: There 1s a significant correlation between the structural
complexity metrics (NC, NA, NM, NAssoc, NAgg, NDep, NGen, NAggH, NGenH,
MaxHAgg, MaxDIT) and the subject’s rating of three maintainability sub-
characteristics, such as understandability, analyzability and modifiability.

77

Argentine Symposium on Software Engineering

Experiment design, We selected a within-subject design experiment, i.e., all the tests
{experimental tasks) had to be solved by cach of the subjects. The tests were put in a
different order for cach subject.

2.3 Operation

Preparation. By thc time the experiment was done all of the students had taken two
courses in Softwarc Engineering, in which they learnt in depth how to design OO software
using UML. All the selected professors had more than four years of experience in the
design and development of OO software using UML. Morcover, subjects were given an
intensive training session before the experiment took place. However, the subjects were not
aware of what aspects we intended to study. Neither were they aware of the actual
hypothesis stated.

We prepared the material we handed to the subjects, consisting of twenty eight UML
class diagrams of the same universe of discourse, related to Bank Information Systems. The
structural complexity of each diagram is different, because as table 2 shows, the values of
the metrics are different for each diagram.

Table 2. Metric values for each class diagram

TI‘N(;W?M “?;\ﬂs;)c NAgg ‘ NDep 7]\7Gien‘ NAggH NGenH 7MaxHAgg ; Maxliljfi
| | |

‘ po | 2 4 8 1;”""7%{ To ol 0. o 0 0
l 36 12l il x_’ 0] 0 _’1’; ol o
D2 4 9 15! ! 2 0 0 ¥ 0 2 0
l’n"j” 37 12 3 0 0 0| 0 0 0 0
D4 5.4 2 1 3 0 0| 2| 0 2 0
ps| 3 6 R o 0] o o 0| 0
De | 4] 8 12 3 0 1 0 0 o 0 0
I I N N I N E S I B
‘Eﬂ*ﬂig 12‘ 1‘7 0 1} ol 0 0!l 0 0]
‘ D9 74 20| 2 o3 R 2l 1 T 2 1
DIO| 9 18 26| 2, 3o 4| 1 2 3 1
LTy AT N . A I [!
D12 Y 35 3 21 1 ' 2‘ I 1 2 1
E{_‘J 9 26 70} 0 0 4’ 0 1 0, 2
D14} 8 12 30 Q‘ 0‘ o IQ‘ 0l 1 0l 3
ms| 1117, 38 0| 0} 0 18! 0 1 0 4
Do 20 @ 76 ol el 2l w7] 2 7
,E,J,,ﬁz};,,ﬂ 8 10 67\7”7 2 16| 2 EI 3|
sl 21 45 ea 6 6] w2 2 74 4
Di9| 29] se 98l 12 717 I 24\ b 3 T4 4| 4|
p| 9 ¥ & 1 s 0 22 I G
) 18 30 el 33 4 K 4

78

Argentine Symposium on Software Engineering

jli'z'i"‘_"fé T 19 'lt_ 6 0, 21 2 5 4 3
'p23| 17 32 69 I E 0! 19 T i 2 5
inzq 2350 73 o: 7 2] " 34 4
|p2s| 22 42 4l 14 4 41 62 3 2! 3
gﬁﬁ‘ 14 34 I R 3 3 a
D27 “___1 S 47 6: 6 0l 1 3 2 2 2

Each diagram had a test enclosed which includes the description of three maintainability
sub-characteristics; understandability, analyzability and modifiability. Each subject had to
rate each sub-characteristic using a scale consisting of seven linguistic labels. For example
for understandability we proposed the following linguistic labels shown in table 3.

TFable 3. Linguistic labels for Understandability

Extremely Very A bit Neither | Quite easy | Veryeasy | Extremely

difficult to | difficult to | difficult to | difficult nor | to ‘ to easy to

understand ; understand | understand ; easy to i understand | understand | understand
| | | | understand

We also prepared a debriefing questionnaire. This questionnaire included (i) personal
details and experience, (ii) opinions on the influence of different components of UML class
diagrams, such as: classes, attributes, associations, generalisations, etc. on their
maintainability.

Execution. The subjects were given all the materials described in the previous paragraph.
We cxplained to them how to carry out the tests. We allowed one week to do the
experiment, i.e., each subject had to carry out the test alone, and could use unlimited time
to solve it.

We collected all the data, including subjects’ rating obtained from the responses of the
expenment and the metric values automatically calculated by means of a metric tool we had
designed.

Data validation. We collected all the tests, checking if they were complete. As all of them
were complete and the subjects had at least medium experience in building class diagrams
(this fact was corroborated analysing the responses of the debriefing questionnaire) we
consider their subjective evaluation reliable.

2.4 Analysis and interpretation

First we summarised the data collected. We had the metric values calculated for each class
diagram, and we calculated the mean of the subjects’ rating for each maintainability sub-
characteristic. So this is the data we want to analyse to test the hypotheses stated above.

We applied the Kolmogrov-Smirnov test to ascertain if the distribution of the data
collected was normmal or not. As the data were non-normal we decided to use a non-
parametric test like Spearman’s correlation coefficient, with a level of significance o =
0.05, which means the level of confidence is 95%.

79

Argeniine Symposium on Software Engineering

Using Spearman’s correlation coefficient, each of the metrics was correlated separately
to the mean of the subject'’s rates of understandability, analysability and modifiability (see
table 4).

Table 4. Spearman’s correlation between the metrics and understandability, analysability and

l

modifiability
"R‘F‘ NA | NM ' NAssoc | NAgg | NDep | NGen | NAggH NGenH | MaxHAgg MaxDIT‘
| Understandability ‘0912 0892 | 0859 0775 0789 0554 | 0833 | 0.683 0857 | 0708 0677 ’
0 | p0 p=0 | p=0 'p=0002| p0 p=0 p=0 p=0
| Analysability ‘0926J 08%'0883: 0724 ' 0812 0.529 | 0848 | 0.693 0.863 0.684 0759 '
I =0 p0 | p=0 | p0 p=0 _._p=004 | p=0 | p=0 _p=0 | p=0
J Modifiability ‘0943\ 0907 | 0909 ~ 0.730 | 0.748 0525 ‘,0.881 0.676 0.891 0.673 0805 l
i p=0 p=0 | p=0 , p=0 | p=0 p=004 | p=0 | p=0 p=0 | p=0 !

For a sample size of 28 (median values for each diagram) and o = 0.05, the Spearman
cutoff for accepting H, is 0.48 (Briand et al, 1995). Because the computed Spearman's
correlation coefficients (see tablc 4) arc above the cutoff, and the p-value < 0,01, the null
hypothesis Hy, is rejected. Hence, we can conclude that there is a significant correlation
between the UML class diagram structural complexity metrics and subject’s rating of
understandability, analysability and modifiability.

2.5 Validity evaluation

We will discuss the empirical study’s various threats to validity and the way we attempted
to alleviate them:

Threats to conclusien validity. The conclusion validity defines the extent to which
conclusions are statistically valid. The only issue that could affect the statistical validity of
this study is the size of the sample data (476 values, 28 diagrams and 17 subjects), which is
perhaps not enough for both parametric and non-parametric statistic tests (Briand et al,,
1995). We are aware of this, so we will consider the results of the experiment only as
preliminary findings.

Threats to construct validity. The construct validity is the degree to which the
independent and the dependent variables are accurately measured by the measurement
instruments used in the study. The dependent variables are three maintainability sub-
characteristics: understandability, analysability and modifiability. We proposed subjective
metrics for them (using linguistic variables), based on the judgement of the subjects. As
the subjects involved in this experiment have medium experience in OOIS design using
UML we think their ratings could be considered significant. The construct validity of the
metrics used for the independent variables is guaranteed by Poels and Dedene’s framework
(2000) used to define and validate them.

80

Argentine Symposium on Sofiware Engineering

Threats to Internal Validity. The internal validity is the degree to which conclusions can
be drawn about cause - effect of independent variables on the dependent variables. The
following issues have been dealt with:

Differences among subjccts. Using a within-subjects design, error variance due to
differences among subjects is reduced. As Briand et al. (Briand et al., 2001) remarks
when dealing with small samples in software engineering experiments, variations in
participant skills are a major concern that 1s difficult to fully address by randomisation
or blocking. In this experiment, professors and students had approximately the same
degree of experience in modelling with UML2

Knowledge of the universe of discourse among class diagrams. Class diagrams were
from the same universe of discourse, the only variant being the number of attributes,
classes or associations, Le., their constituent parts. Conscquently, knowledge of the
domain does not affect the internal validity.

Accuracy of subject responscs. Subjects assumed the responsibility for rating each
maintainability sub-characteristic. As they have medium expenience in OO software
design and implementation, we think their rcsponses could be considered valid.
However, we are aware that not all of them have exactly the same degree of
experience, and if the subjects have more experience minor inaccuracies could be
introduced by subjccts.

Learning effects. The subjects were given the test in a different order, to cancel out
learning effects. Subjects were required to answer in the order in which the tests
appeared.

Fatigue effects. On average the experiment lasted for less than one hour, so fatigue was
not very relevant. Also, the different order in the tests helped to cancel out these
effects.

Persistence effects. In order to avoid persistence cffects, the experiment was run with
subjects who had never done a similar experiment.

Subject motivation. All the professors who were involved in this experiment have
participated voluntarily, in order to help us in our research. We motivated students to
participate in the experiment, explaming to them that similar tasks to the experimental
ones could be done in cxams or practice.

Other factors. Plagiarism and influence among students could not really be controlled.
Students were told that ralking with each other was forbidden, but they did the
expertment alone without any supervision, so we had to trust them as far as that was
concermned. We arc conscious that this aspect at some extent could can threat to the
validity of the experiment, but in that moment it was impossible to join all the subjects
together. We are planning to replicate this experiment in a more controlled
environment.

? We argue this because the students are Ph.D. students and students of the final-year, and

professors are young professors, who has been graduated one or two years ago.

81

Argentine Symposium on Software Engineering

Threats to external validity. The external validity is the degree to which the results of the

research can be generalised to the population under study and other research settings. The

greater the external validity, the more the results of an empirical study can be generalised to
actual software engineering practice. Two threats of validity have been identified which
limit the possibility of applying any such generalisation:

— Materials and tasks used. in the experiment we tried to use class diagrams which can
be representative of real cases. Related to the tasks, the judgement of the subjects is to
some extent subjective, and does not represent a real task. So more empirical studies
taking “real cases” from software companies must be dene.

— Subjects. To solve the difficulty of obtaining professional subjects, we used professors
and advanced students from softwarc engincering courses. We are aware that more
experiments with practitioners and professionals must be carried out in order to be able
to generalise these results. However, in this case, the tasks to be performed do not
require high levels of industrial cxperience, so, experiments with students could be
appropriate {Basili et al, 1999).

2.6 Presentation and package

As the diffusion of the experimental data is important to external replication (Brooks et al.,
1996) of the experiments we have put all the material of this experiment on our web site
http:\\alarcos.inf-cr.uclm.es.

3 Second experiment

As the majority of the steps are identical to those of the first experiment we will only point
out those issues which are different. The subjects were ten professors and twenty students
enrolled in the final-year of Computer Scicnce at the Department of Computer Science at
the University of Castilla-La Mancha in Spain. All of the professors belong to the Software
Engineering area.

The dependent variable was measured by the time the subjects spent carrying out the
tasks required in the experiment. We called this time “maintenance time”. Maintenance
time comprises the time to comprehend the class diagram, to analyse the required changes
and to implement them. Our assumption here is that, for the same modification task, the
faster a class diagram can be modified, the easier it is to maintain,

We wish to test the following hypothescs:

— Null hypothesis, HO: There is no significant correlation between structural
complexity metrics (NC, NA, NM, NAssoc, NAgg, NDep, NGen, NAggH,
NGenH, MaxHAgg, MaxDIT) and maintenance time.

— Alternative hypothesis, H1 : There is a significant correlation between structural
complexity metrics (NC, NA, NM, NAssoc, NAgg, NDep, NGen, NAggH,
NGenH, MaxHAgg, MaxDIT) and maintcnance time.

The material we gave to the subjects consisted of a guide explaining UML notation and
nine UML class diagrams of different application domains, that were easy enough to be

82

Argentine Symposium on Software Engineering

understood by each of the subjects. The diagrams have different structural complexity,
covering a broad range of metric values (see table 5).

Table 5. Metric values for each class diagram

NC NA NM | NAssoc ‘NAgg NDep | NGen | NAggH | NGenH | MaxDIT | MaxHAgg
DI 7 Ll 2 1 0 0 5 0 1 2 0
D2 8 12 N 1 6 0 I i 1 1 2
D3 3 17024 2 0 0 0 0 0 0 0
D4 10 12| 21 15 3 0 0 2 0 0 1
D3 9 19 29 3 3 0 3 3 1 2]
D6 7 16 7 6 0 0 0 0 0 0 0
D7 23 33 66 4 5 2 16 2 3 3 3
D8 200 30 65 6 5 0 14 4 3 3 2
D9 23 65, 80 20 3 2 3 3 I 2 3

Each diagram had an enclosed test that included a brief description of what the diagram
represented and two new requirements for the class diagram. Each subject had to modify
the class diagrams according to the new rcquirements and to specify the start and end time.
The difference between the two is what we call maintenance time (expressed in minutes
and seconds). The modifications to each class diagram werc similar, including adding
attributes, methods, classes, ctc.

We collected all the data including the modificd class diagrams with the maintenance
time obtained from the responses of the tests and the metrics values automatically
calculated by means of a metric tool we designed.

Once the data was coilected, we controlled if the tests were complete and if the
modifications had been done correctly. We discarded the tests of seven subjects, which
included a required modification that was done incorrectly. Therefore, we took into account
the responses of 23 subjects.

We used the data collected in order to test the hypotheses formulated in section 3.2.

We applied the Kolmogrov-Smirnov test to ascertain if the distribution of the data
collected was normal. As the data were non-normal we decided to use a non-parametric test
like Spearman’s correlation coefficient, with a level of significance o = 0.05. correlating
each of the metrics scparately with maintcnance time (see table 6).

Table 6. Spearman s corrclation coefficients between metrics and maintenance

time.
’ NC NA NM ‘ NAssoc | NAgg NDep NGen | NAgeH | NGenH |Max HAgg| Max DIT
Maintenance| 0941 0.803 0795 | 0671 | 0667 0411 0.728 | 0.759 0.719 0.840 0.669
Time p=0 | p=0.009 | p=0.01 | p=0.006 | p=0.049 | p=0.272 | p=0.04 | p=0.018 | p=0.029 | p=0.005 p=0.04

For a sample sizc of 9 (mean values for each diagram) and o = 0.05, the Spearman
cutoff for accepting Hy is 0.66 (Briand ct al., 1995). Because the computed Spearman’s
correlation coefficients (sce table 6) for all the metrics, cxcept for NDep, are above the
cutoff, and the p-value < 0,03, the null hypothesis Hy, is rejected . Hence, we can conclude

83

Argentine Symposium on Sofiware Engineering

that there is a significant correlation between all the metrics (except NDep) and the
maintenance time.

So, NDep is the only one that has a no correlation, but this could be explained by the
fact that in most of the selected diagrams NDep took the value 0 (see table 5). So in future
experiments we have to select diagrams with more representative NDep metric values.

4 Comparison of results

An overall analysis of the results obtained (sec tables 4 and 6) leads us to conclude that the
metrics NC, NA, NM, NAssoc, NAgg, NGen, NAggH, NGenH, MaxHAgg, MaxDIT are
to some extent corrclated with the three maintainability sub-characteristics we considered.
NDep seems to be the only non-correlated metric, although this preliminary result may be
caused by the design of the experiment as in the second experiment the majority of the
diagrams did not have dependencics. We believe it is too early to consider these results as
definitive. As previously stated, further empirical validation is needed, including internal
and external replication of these experiments, and also new experiments must be carried out
, with practitioners who work in software development organisations. As Basili et al. (1999)
remark, after performing a family of experiments you can build the cumulative knowledge
to extract useful measurement conclusions to be applied in real measurement projects.

Moreover, data related to “real projects” is also nceded for gathering real evidence that
these metrics can be used as early class diagram maintainability indicators.

5 Conclusions and future work

It is widely recognized that the quality of OO softwarc must be assessed from the early
phases of its development tlife cycle. This fact lead us to define a set of metrics for
assessing the structural complexity of UML class diagrams, with the idea that they are
correlated with the maintainability of such diagrams.

These early metrics could allow OO software designers a quantitative comparison of
design alternatives, and therefore, an objective selection among several class diagram
alternatives with equivalcnt semantic content, and the prediction of external quality
characteristics, like maintainability in the initial stages of the IS life cycle and a better
resource allocation based on these predictions. In this sense we have built prediction
models (based on the metrics values) using two advanced techniques borrowed from
artificial intelligence (Genero et al., 2001a; Gencro et al, 2001b). Although the accuracy of
prediction of those models is pending on further investigation.

Performing empirical validation with the metrics is fundamental in order to demonstrate
their practical utility. In this line we have summarized two controlled experiments with the
aim of corroborating if there is a significant correlation between the proposed metrics and
the maintainability sub-charactcristics: analysability, understandability and modifiability.
The results obtained in both experiment shows that most of the metrics we proposed
(NAssoc, NAgg, NaggH, MaxHAgg, NGen, NgenH and MaxDIT) arc good indicators of
class diagram maintainability sub-characteristics. We cannot, however, draw such firm
conclusions regarding the NDep metric.

84

Argentine Symposium on Software Engineering

Some changes that could be made to improve the experiment presented are:

~ Increase the size of the class diagrams. By increasing the size of the class diagrams
we can have examples that are closer to reality. Also, as the examples are more
realistic, and if we are working with professionals, we can make better use of their
potential capability and conclude that the results are more general.

— Increase the difference between the values of the metrics. This option could lead to
more conclusive results about the metrics and their relationship with the factor we
are trying to control.

— Carry out the experiment i a more controlled environment.

— Work with real data. Another way to obtain more conclusive results about metrics is
by working with real data in additional case studies. However, the scarcity of such
data continues to be a great problem so we must find other ways to tackle validating
metrics.

6. Acknowledgements

This research is part of the DOLMEN project supported by CICYT (TIC 2000-1673-C06-
06).

7. References

Basili, V., Rombach, H.: The TAME project: towards improvement-oriented software
environments. IEEE Transactions on Software Engineening, Vol. 14 N° 6. (1988) 728-
738.

Basili, V., Shull, F., Lanubile, F.: Building Knowledge through Families of Experiments.
IEEE Transactions on Software Enginecring, Vol. 25 N° (4). (1999) 435-437.

Briand, L., El Emam, K., Morasca, S.: Theoretical and empirical validation of software
product measures. Technical Report ISERN-95-03. International Software Engineering
Research Network. (1995).

Briand, L., Arisholm, S., Counsell, F., Houdek, F., Thévenod-Fosse, P.. Empirical Studies
of Object-Oriented Artefacts, Methods, and Processes: State of the Art and Future
Directions. Empirical Software Engineering, Vol. 4 N* 4. (1999) 387-404.

Briand, L., Bunse, C., Daly, J.: A Controlled Experiment for evaluating Quality Guidelines
on the Maintainability of Object-Oriented Designs. I[EEE Transactions on Software
Engineering, Vol. 27 N° 6. (2001) 513-530.

Brito e Abreu, F.. Carapuga, R.: Object-Oriented Software Engineering: Measuring and
controlling the development process. 4th Int Conference on Software Quality. Mc Lean,
Va, USA, (1994).

Brooks A., Daly J., Miller, J., Roper, M., Wood, M.: Replication of experimental results in
software engineering. Technical report [SERN-96-10. International Software
Engineering Research Network. (1996).

85

Argentine Symposium on Software Engineering

Calero, C., Piattini, M., Genero, M.: Empirical validation of rcferential integrity metrics.
Information and Software Technology, Vol. 43. (2001) 949-957.

Chidamber, S., Kemerer, C.. A Metrics Suite for Object Oriented Design. [EEE
Transactions on Software Engineering, Vol. 20 N 6. (1994) 476-493.

Fenton, N., Pfleeger, S.: Softwarc Mctrics: A Rigorous Approach. 2nd. edition. London,
Chapman & Hall. (1997).

Genero, M., Piattini, M., Calero, C.. Early Measures For UML class diagrams. L Objet.
Vol. 6 N°. 4. Hermes Science Publications. (2000) 489-515.

Gencro, M., Olivas, J., Piattini, M., Romero, F.: Using metrics to predict OO information
systems maintainability. CAISE 2001, Interlaken, Switzerlarnd. Lecture Notes in
Computer Science 2068. (2001a) 388-401.

Genero. M., Jiménez, L., Piattini, M.. Empirical Validation of Class Diagram Complexity
Metrics. SCCC 2001, Chile. IEEE Cemputer Society Press. (2001b) 95-104.

Genero, M.: Defining and Validating Metrics for Conceptual Models. Ph.D. thesis,
University of Castilla-La Mancha. (2002).

Harrison, R. Counsell, S., Nithi, R.: Expcrimental Assessment of the Effect of Inheritance
on the Maintainability of Object-Oriented Systems. The Journal of Systems and
Software, 52, (2000) 173-179.

Henderson-Sellers, B.: Object-Oriented Metrics - Measures of complexity. Prentice-Hall,
Upper Saddle River New Jersey (1996) 489-515.

[SO/AEC 9126-1.2, Information technology- Software product quality — Part 1: Quality
model. (1999).

Kitchenham, B., Pflegger, S., Fenton, N.: Towards a Framework for Software Measurement

Validation. IEEE Transactions of Softwarc Enginecring, Vol. 21 N° 12. (1995) 929-943.

Lorenz, M., Kidd, J.: Objcct-Oriented Softwarec Metrics: A Practical Guide. Prentice Hall,
Englewood Clifts, New Jersey (1994).

Marchesi, M.: OOA Metrics for the Unified Modeling Language. Proceedings of the 2nd
Euromicro Conference on Software Maintenance and Reengineering. (1998) 67-73.

Melton A. (ed.): Software Measurement. International Thomson Computer Press, London
(1996).

Perry, D., Porter, A., Votta, L.: Empirical Studics of Software Engineering: A Roadmap.
Future of Software Engincering. Ed: Anthony Finkelstcin, ACM, (2000) 345-355.

Poels, G., Dedene, G.: Distance-based software mcasurement: necessary and sufficient
properties for software measures. Information and Software Technology, Vol. 42 N° I,
(2000) 35-46.

Schneidewind, N.: Mcthodology For Validating Software Metrics. [EEE Transactions of
Software Engincering, Vol. 18 N° 5. (1992)410-422.

Wohlin, C., Runeson, P., Host, M., Ohlson, M., Regnell, B., Wesslén, A.. Experimentation
in Software Engincering: An Introduction, Kluwer Academic Publishers. (2000).

Zuse, H.: A Framework of Software Measurcment. Walter de Gruyter, Berlin (1998).

86

