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Abstract. In this work, we present an application of the 
Fuzzy Logic in the field of prediction in Software 
Engineering. We specifically use the Fuzzy Prototypical 
Knowledge Discovery for characterizing the UML 
statechart diagrams according to their understandability,  
starting from the structural complexity and size of the 
diagrams, expressed by means of metrics, and the Fuzzy 
Deformable Prototypes, to obtain a prediction model of 
the understandability time of the UML statechart 
diagrams. The obtained model, built from data obtained 
through experimentation, is valid –in a certain way- since 
the 75% of the estimated values are at least 70% accurate, 
although it is necessary further validation with data 
obtained from real projects. 

 
1. Introduction 

 
It is well-known in Software Engineering that the quality 
characteristics of object-oriented (OO) systems, such as 
maintainability, must be guaranteed from the initial stages 
of their lifecycle, focusing on the models obtained in these 
stages. In the recent years, this fact has been emphasized 

given the great growth that the Model-Driven 
Development [1] and the Model-Driven Architecture [19] 
have experimented. In the OO development, some 
diagrams are done to cover static (class diagrams) and 
dynamic (use case diagrams, statechart diagrams...) 
aspects. For evaluating the quality of these diagrams in an 
objective way, it is necessary to rely on quantitative 
measures that avoid bias in the evaluation process.   

There are several works published about quality 
measurement of UML class diagrams and use case 
diagrams [15]. However, there are only a few 
bibliographical references about metrics for behavioural 
diagrams, such as statechart diagrams, sequence diagrams 
or activity diagrams. Brito e Abreu et al. [9] and Poels and 
Dedene [24] pointed out that the definition of metrics for 
diagrams that capture dynamic aspects of OO systems is a 
relevant are for further research, but it has been 
disregarded in the software measurement field. This fact 
motivated us to define metrics for UML behavioural 
diagrams, starting with statechart diagrams [20] (see Table 
1). 

 
 

Table 1. Metrics for UML statechart diagrams 
 Metric Name Metric Definition 

NEntryA  The total number of entry actions, i.e., the actions performed each time a state is entered. 
NExitA  The total number of exit actions, i.e., the actions performed each time a state is left. 
NA The total number of activities (do/activity) in the statechart diagram. 
NSS The total number of states considering also the simple states within the composite states. 
NCS The total number of composite states, i.e., the states with nested sub-states. 
NE The total number of events. 

Size 

NG The total numbers of guard conditions. 

Structural 
Complexity 

NT The total number of transitions, considering common transitions (the source and the target 
states are different), the initial and final transitions, self-transitions (the source and the target 
states are the same) and internal transitions (transitions inside a state that respond to an event 
but without leaving the state). 



 

 Metric Name Metric Definition 
 CC (McCabe’s 

[18] Cyclomatic 
Complexity)1 

Defined as |NSS-NT|+2 

                                                             
1Even tough the Cyclomatic Number of McCabe was defined to calculate single module complexity and entire system complexity, we 

tailored it for measuring the structural complexity of UML statechart diagrams. 

 
Our approach about how the structural complexity and 

the size as internal attributes of statechart diagrams are 
potentially related with their understandability emerged 
from similar works [8][16] done in the field of Empirical 
Software Engineering, in which these properties were 
showed to be some of the greatest determinants of 
external quality characteristics, such as understandability 
and maintainability. 

The metrics presented in Table 1 were theoretically 
validated using the Briand et al.’s [6] property-based 
framework, obtaining that the metrics NEntryA, NExitA, 
NA, NSS, NCS, NE and NG are size metrics, while NT 
and CC are complexity metrics.  

As it is well-known in the software measurement field, 
if we want metrics that measure internal attributes (size, 
complexity...) to be useful, it is necessary that they can be 
used to predict some external attribute of quality, such as 
understandability or maintainability.  

By means of a controlled experiment and its replication 
[15] that will be detailed in section 2, we have found out 
that the proposed metrics NA, NSS, NG and NT, seem to 
be strongly correlated with the understandability time the 
UML statechart diagrams. This led us to think about the 
construction of a prediction model of the 
understandability time of UML statechart diagrams, based 
on the values of these metrics. For the construction of the 
prediction model, we have used all the metrics, since we 
considered too premature to discard some of them. 

Considering the encouraging results previously 
obtained by applying the Fuzzy-Prototypical Knowledge 
Discovery (FPKD) process and the Fuzzy Deformable 
Prototypes for the construction of prediction models 
applied to different domains [22][13][14], we decided to 
use them for our purpose. For the shake of brevity we will 
not explain in-depth all the steps of the prediction process, 
although further details about them can be found in [21].  

In our case, the main goals of the prediction process 
are: firstly, the automatic search and extraction of fuzzy 
prototypes to characterize the UML statechart diagrams 
across their understandability, expressed as the structural 
complexity and size of the diagrams. This will be done 
using the Fuzzy Prototypical Knowledge Discovery 

(FPKD) process; and secondly, the obtainance of a 
prediction model of the understandability time of the 
UML statechart diagrams, by means of the deformation of 
the previously discovered fuzzy prototypes. 

The FPKD is an extension of the classic KDD [10] 
process that presents as novelties the incorporation of 
knowledge in different points by means of the user or the 
expert decisions and a result prepared to generate some 
conceptual prototypes called Fuzzy Deformable 
Prototypes, based on the idea of Fuzzy Prototypical 
Categories [21][27]. The use of fuzzy logic let us get 
these results in a more understandable and useful way for 
their later use in the prediction process. We can evaluate 
new situations from such prototypes, establish predictions 
for real situations and also make decisions from these 
predictions. Some other techniques, such as fuzzy 
clustering and aggregation functions [10], are also used, 
making easier the generation of structured, significant and 
easily updatable models. 

This work is organized as follows: in section 2, the 
controlled experiment and its replication are presented. In 
section 3 we describe the different steps followed until 
getting the prediction model, which consist of the FPKD 
process, the proper prediction process and the validation 
of the prediction model. Finally, in section 4 we present 
the main conclusions and the future research lines 
emerged from this work. 

 
2. Description of the data sources 
 
In this section we will briefly describe a controlled 
experiment and its replication. They were carried out 
taking into account some suggestions provided by experts 
in Empirical Software Engineering [7][17][23][26]. 
Futher details of the exepriment and its repliaction can be 
found in [20]. 
 
2.1. First experiment 

 
Using the GQM [2] template for goal definition, the goal 
of the experiment is detailed in Table 2. 

 



 

Table 2. Goal of the experiment. 

Analyze Structural complexity and size metrics for UML statechart diagrams 
For the purpose of Evaluating 
With respect to the capability of being used as indicators of the understandability of UML statechart diagrams 
From the point of view of researchers 

In the context of Undergraduate students of Computer Science and Software Engineering teachers of the Computer 
Science Department at the University of Castilla-La Mancha 

 
The experiment consisted of 20 UML statechart 

diagrams related to different universes of discourse but 
easy enough to be understood by each of the subjects (see 
an example in Appendix A). Each diagram had a test 
enclosed, which included a questionnaire in order to 
evaluate whether the subjects had really understood the 
content of the UML statechart diagrams. Each 
questionnaire contained four questions, each of these 
conceptually similar and written in the same order. Each 
subject had to write down the time he/she started and 
finished answering the questionnaire. The difference 
between these two values, expressed in seconds, is what 
we called ‘understandability time’ . The subjects were 
given the material and they have to solve tests alone. We 
allowed them one week to return the experiment solved. 
 
2.2. Experiment replication 

 
The main differences between the experiment and its 
replication are: 
• The subjects were twenty students enrolled in the 

third-year of Computer Science. Therefore, the 
subjects experience was lower than in the first 
experiment. 

• They had to complete the tests alone and in no more 
than two hours. Any doubt could be solved by the 
person that coordinated the experiment, what 
contributed to control the plagiarism. 

 

3. Building a prediction model for the 
understandability time of UML statechart 
diagrams 
 
In order to build the prediction model, we carried out two 
main processes. First, a FPKD process, which consists of 
several steps: data transformation; obtainance of the 
prototypes using clustering techniques; parametric 
definition of the prototypes; fuzzy representation of the 
prototypes (using the data obteined in the fisrt 
experiment). Then, we carried out a Prediction process, 
which consists of the ‘deformation’ of the fuzzy 
prototypes for predicting the understandability time of 
UML statechart diagrams and the  Validation process 
(using the data of the replication). 

Next, we will describe how we carried out each of 
these steps. 

 
3.1. Data transformation 

 
Firstly, it was necessary to transform the data so that they 
were valid for the FPKD process. On one hand, we 
obtained the table with the metric values for statechart. 
On the other hand, we obtained the understandability time 
for each diagram and subject. From these times, we 
obtained the minimum (MinUT), average (AvgUT) and 
maximum (MaxUT) understandability time of each 
diagram (see Table 3). 

Table 3. Time obtained (in seconds) in the transformation process. 

Diagram AvgUT MinUT MaxUT  Diagram AvgUT MinUT MaxUT 
1 110.00 15 420  11 153.16 85 360 
2 95.00 30 170  12 86.37 50 180 
3 191.94 61 360  13 88.05 35 300 
4 163.39 69 405  14 136.05 44 360 
5 129.50 30 215  15 152.22 85 420 
6 124.56 58 310  16 140.05 50 300 
7 154.05 72 300  17 108.63 59 195 
8 140.00 50 360  18 154.89 65 265 
9 131.79 70 300  19 84.26 40 180 

10 85.21 50 180  20 85.84 42 140 
 

3.2. Obtainance of  the prototypes using 
clustering techniques 

 

With the aim of detecting the relationshi ps between the 
UML statechart diagrams to be able later to ascertain 
whether they have a low, medium or high 



 

understandability time, we will carry out a hierarchical 
clustering process, in the way of  Repertory Grids’s 
technique [3].  

The diagrams were grouped in three prototypes 
according to the values of the metrics that reflect their 
structural complexity and size (see Table 4). 

 
3.3. Parametric definition of the prototypes 
Considering the data prototypes found in the previous 
section and their values of the understandability time 

shown in Table 3, we obtained the parametric definition of 
the prototypes, as Table 5 shows. 
 
3.4. Fuzzy representation of the prototypes 

 
The three prototypes were represented as ‘fuzzy numbers’, 
which would allow us to obtain a degree of membership 
(between 0 and 1) of a new statechart diagram with each 
of the prototypes. To use triangular fuzzy numbers it is 
only necessary to know their centre and the size of the 
base of the triangle (named Centre, a and b in Table 6).  

Table 4. Diagrams grouped in prototypes 

Prototypes Diagrams 
Low Understandability Time 10,13,19 
Medium Understandability Time 1,2,4,5,8,9,12,14,16 
High Understandability Time 3,6,7,11,15,17,18,20 

Table 5. Parametric definition of the prototypes 

H: High Underst. Time  M: Medium Underst. Time  L: Low Underst. Time  
Avergae 2 min. 15 sec. Average 2 min. 5 sec. Average 1 min. 25 sec. 
Maximum 7 min. Maximum 7 min. Maximum 6 min. 
Minimum 42 sec. Minimum 15 sec. Minimum 35 sec. 

Table 6. Fuzzy definition of the prototypes 

Prototypes Diagrams a Centre B 
Low Understandability Time 10,13,19 0 0.08 0.74 

Medium Understandability Time 1,2,4,5,8,9,12,14,16 0 0.26 0.92 
High Understandability Time 3,6,7,11,15,17,18,20 0 0.34 1 

 
The formal definition of the prototypes as fuzzy 

numbers is obtained by means of a normalization process, 

carried out in the following way  
minmax

min'

xx
xx

x n
n −

−
= , and 

the aggregation by means of average of the data 
corresponding to the metric values.  

 
3.5. Deformation of the fuzzy prototypes to 
predict the understandability time of UML 
statechart diagrams 

 
In this section we will show how to predict the 
understandability time for a new statechart diagram. We 
use as example the diagram 16 used in the experiment 
(showed in Appendix A) 

The process is as follows: 
1. Normalization of the values measured by means of the 

indexes of normalization associated with the obtained 
prediction model. The same formula is used as in the 
definition of the fuzzy numbers and with the same 
coefficients of minimum and maximum. In this way we 
obtained the values shown in Table 7.  
2. Calculate the average of the previously normalized 

values (this value is called X). X=0.53. 

3. From X, we obtain the degrees of membership to the 
prototypes represented by means of the fuzzy 
numbers as follows: 

pipi

pi
pipi acentre

aX
centreX

−

−
=⇒> µ  

pipi

pi
pipi centrec

Xc
centreX

−

−
=⇒>= µ  

The results for the diagram 16 are shown in Table 8. 
4. To obtain the predicted value of the 

understandability time for a new statechart diagram, 
the fuzzy prototypes are ‘deformed’ to consider the 
affinity degree with all the prototypes. Applying the 
concept of Fuzzy Deformable Prototypes defined in 
[21], the characterization of the proposed new 
statechart diagram can be described by the following 
linear combination:  

|)...(|)...( 11 ninreal vvpwwC ∑= µ  
Where: 
Creal   Real case proposed. 
(w1... wn) Parameters that describe the real case 

proposed. 



 

µpi  Degree of membership with the non-zero Fuzzy 
Deformable Prototypes. 

(v1... vn) Parameters of these Fuzzy Deformable 
Prototypes. 

For the diagram 16 the predicted value is shown in 
Table 9. 

The result of applying the prototype deformation to 
every diagram is shown in Table 10. 

 
Table 7. Metric values for the diagram 16. 

 NEntryA NExitA NA NSS NCS NT NE NG CC 
Values 0 0 5 9 0 21 22 1 16 

Normalized 0 0 1 0.7 0 1 0.95 0.3 1 

Table 8. Value of the affinities of the diagram 16 with the prototypes. 

Prototypes Affinities 
Low Understandability Time 0 

Medium Understandability Time 0.591 

High Understandability Time 0.712 

Table 9. Predicted value for the diagram 162. 

Average 2 min. 5 sec. 2 min. 15 sec. 2 min. 2 sec. 
Maximum 7 min. 7 min. 7 min. 5 sec. 
Minimum 

0.591 / 2 
15 sec. 

+ 0.712 
42 sec. 

= 
34 sec. 

Table 10. Predicted values for each UML statechart diagrams. 

DIAGRAM X Aff(B) Aff (M) Aff (A) Estimated value Real value MRE 
1 0.15 0.894 0.577 0.441 116.38 110.00 0.058 
2 0.14 0.909 0.538 0.412 114.925 95.00 0.210 
3 0.18 0.848 0.692 0.529 120.52 191.94 0.372 
4 0.16 0.879 0.615 0.471 117.765 163.39 0.279 
5 0.24 0.758 0.923 0.706 162.75 129.50 0.257 
6 0.41 0.5 0.773 0.894 156.41 124.56 0.256 
7 0.23 0.773 0.885 0.676 158.9375 154.05 0.032 
8 0.34 0.606 0.879 1 177.875 140.00 0.271 
9 0.23 0.773 0.885 0.676 158.9375 131.79 0.206 

10 0.11 0.955 0.423 0.324 110.785 85.21 0.300 
11 0.34 0.606 0.879 1 177.875 153.16 0.161 
12 0.12 0.939 0.462 0.353 112.155 86.37 0.299 
13 0.06 0.75 0.231 0.176 79.92 88.05 0.092 
14 0.1 0.97 0.385 0.294 109.4 136.05 0.196 
15 0.39 0.53 0.803 0.924 162.485 152.22 0.067 
16 0.53 0.318 0.591 0.712 122.205 140.05 0.127 
17 0.18 0.848 0.692 0.529 120.52 108.63 0.109 
18 0.51 0.348 0.621 0.742 125.555 154.89 0.189 
19 0.05 0.625 0.192 0.147 66.565 84.26 0.210 
20 0.16 0.879 0.615 0.471 117.765 85.84 0.372 

                                                             
2 In this case, following some recommendations given by the experts, as the sum of the membership degrees is greater than 1, we di-

vided the membership degree of the second most similar prototype by two. 

 
3.6. Validation of the prediction model 

 
We based on the most commonly used techniques [11] to 
evaluate the accuracy of our prediction model, MMRE, 
MdMRE and Pred(25%). 

The values of MRE obtained for each diagram are 
shown in Table 10. In this experiment, the value for 

MMRE and MdMRE for is 0.20. The value obtained for 
Pred(25%) is a 70%, what indicates that a 75% of the 
obtained values are at least 70% accurate.  

In Figure 1 are shown the predicted and real average 
values for the understandability time of each statechart 
diagram of the experiment. 
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Figure 1. Predicted values vs. real values 

 
4. Conclusions  

 
The main contribution of this work is a prediction 

model for he Understandability Time of UML statecharts 
diagrams. This model was built from some metrics for the 
structural complexity and size of UML statechart 
diagrams using two fuzzy logic-based techniques: the 
Fuzzy Prototypical Knowledge Discovery (FKPD) process 
and the Fuzzy Deformable Prototypes. The data used to 
build the model was obtained through a controlled 
experiment. Moreover, the model was validated usin data 
obtained in a replication of the experiment. Through the 
validation, we reached the conclusion that – in a certain 
way- it is a good model, since a 75% of the 
understandability time estimated values are at least 70% 
accurate.  

Although the results are encouraging, we are aware that 
we must improve our study in two ways: with respect to 
the data used for obtaining the prediction model and with 
respect to the technique applied for building the prediction 
model. 

For that, on one hand we have to replicate the 
experiment with professionals and examine the usefulness 
of the metrics in real projects. Related to the prediction 
model, there are also some aspects to improve. Using 
algorithms such as Fuzzy C-Means [4], Fuzzy Kohonen 
Networks [5] or soft clustering algorithms in general, 
would allow us to raise the power of problems resolution. 
These algorithms can make the clustering process and the 
model construction to be done at once, deciding the 
number of prototypes before being carried out. Moreover, 
these algorithms allow a better manipulation of great 
volume of data. 
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Appendix A 

In this appendix we will show, as example, one of the test 
used in the experiment, corresponding to the diagram 16. 
 

 
DIAGRAM 16: MAKING A TELEPHONE CALL 2 
 

 
IDDLE 

GET TONE 
do/ Dial tone 

Hang up 

OCCUPIED 
do/ Start occupied tone 

DIALING 

Push digit (n) 

CONNECTING 
do/ Search connection 

ERROR MESSAGE 

do/ Emit message RINGING 
do/ Emit ring 

CONNECTED 
on New incoming call / Emit ring 

DISCONNECTED 

Take down 

Take down 

Occupied speaker 

On line 

Take down 

Exchange calls  
[ Two connections = TRUE ] 

Answer / Connect Line  

Take down 

Called phone takes down / Disconnect line 

Take down / Disconnect line  

Make new call  

Time exhausted 

Push digit  (n) 

Take down 

Take down 
[Time exhausted] 

[Valid numb er] 

[ Invalid number ] 

End of message 

Take down 

 



 

TIME NOW: ________ 
 
Answer the following questions: 

1. If you get from CONNECTED to IDDLE, which event has occurred previously?  TAKE DOWN 
2. If you are CONNECTED and the event Occupied speaker occurs, which state do you get to?         

   OCCUPIED 
3. Which events and/or conditions will have occurred at least and in which order for getting form IDDLE to RINGING?  

(1) Hang up (2) Push digit(n) (3) [Valid number] (4) On line 
 

4. Starting from ERROR MESSAGE, which state will you get if the following sequence of events and conditions occurs? (1) 
Take down (2) Hang up (3) Push digit(n) and (4) [Time exhausted].        OCCUPIED 

 
TIME NOW: ________ 

 


