
Predicting UML Statechart Diagrams
Understandability Using Fuzzy Logic-Based Techniques

José A. Cruz-Lemus1, Marcela Genero1, José A. Olivas2, Francisco P. Romero2 and Mario Piattini1
1ALARCOS Research Group, 2ORETO Research Group

Department of Computer Science,University of Castilla-La Mancha
Paseo de la Universidad, 4, 13071, Ciudad Real (Spain)

{JoseAntonio.Cruz, Marcela.Genero, JoseAngel.Olivas, Mario.Piattini}@uclm.es
fpromero@soluziona.com

Abstract. In this work, we present an application of the
Fuzzy Logic in the field of prediction in Software
Engineering. We specifically use the Fuzzy Prototypical
Knowledge Discovery for characterizing the UML
statechart diagrams according to their understandability,
starting from the structural complexity and size of the
diagrams, expressed by means of metrics, and the Fuzzy
Deformable Prototypes, to obtain a prediction model of
the understandability time of the UML statechart
diagrams. The obtained model, built from data obtained
through experimentation, is valid –in a certain way- since
the 75% of the estimated values are at least 70% accurate,
although it is necessary further validation with data
obtained from real projects.

1. Introduction

It is well-known in Software Engineering that the quality
characteristics of object-oriented (OO) systems, such as
maintainability, must be guaranteed from the initial stages
of their lifecycle, focusing on the models obtained in these
stages. In the recent years, this fact has been emphasized

given the great growth that the Model-Driven
Development [1] and the Model-Driven Architecture [19]
have experimented. In the OO development, some
diagrams are done to cover static (class diagrams) and
dynamic (use case diagrams, statechart diagrams...)
aspects. For evaluating the quality of these diagrams in an
objective way, it is necessary to rely on quantitative
measures that avoid bias in the evaluation process.

There are several works published about quality
measurement of UML class diagrams and use case
diagrams [15]. However, there are only a few
bibliographical references about metrics for behavioural
diagrams, such as statechart diagrams, sequence diagrams
or activity diagrams. Brito e Abreu et al. [9] and Poels and
Dedene [24] pointed out that the definition of metrics for
diagrams that capture dynamic aspects of OO systems is a
relevant are for further research, but it has been
disregarded in the software measurement field. This fact
motivated us to define metrics for UML behavioural
diagrams, starting with statechart diagrams [20] (see Table
1).

Table 1. Metrics for UML statechart diagrams
 Metric Name Metric Definition

NEntryA The total number of entry actions, i.e., the actions performed each time a state is entered.
NExitA The total number of exit actions, i.e., the actions performed each time a state is left.
NA The total number of activities (do/activity) in the statechart diagram.
NSS The total number of states considering also the simple states within the composite states.
NCS The total number of composite states, i.e., the states with nested sub-states.
NE The total number of events.

Size

NG The total numbers of guard conditions.

Structural
Complexity

NT The total number of transitions, considering common transitions (the source and the target
states are different), the initial and final transitions, self-transitions (the source and the target
states are the same) and internal transitions (transitions inside a state that respond to an event
but without leaving the state).

 Metric Name Metric Definition
 CC (McCabe’s

[18] Cyclomatic
Complexity)1

Defined as |NSS-NT|+2

1Even tough the Cyclomatic Number of McCabe was defined to calculate single module complexity and entire system complexity, we

tailored it for measuring the structural complexity of UML statechart diagrams.

Our approach about how the structural complexity and

the size as internal attributes of statechart diagrams are
potentially related with their understandability emerged
from similar works [8][16] done in the field of Empirical
Software Engineering, in which these properties were
showed to be some of the greatest determinants of
external quality characteristics, such as understandability
and maintainability.

The metrics presented in Table 1 were theoretically
validated using the Briand et al.’s [6] property-based
framework, obtaining that the metrics NEntryA, NExitA,
NA, NSS, NCS, NE and NG are size metrics, while NT
and CC are complexity metrics.

As it is well-known in the software measurement field,
if we want metrics that measure internal attributes (size,
complexity...) to be useful, it is necessary that they can be
used to predict some external attribute of quality, such as
understandability or maintainability.

By means of a controlled experiment and its replication
[15] that will be detailed in section 2, we have found out
that the proposed metrics NA, NSS, NG and NT, seem to
be strongly correlated with the understandability time the
UML statechart diagrams. This led us to think about the
construction of a prediction model of the
understandability time of UML statechart diagrams, based
on the values of these metrics. For the construction of the
prediction model, we have used all the metrics, since we
considered too premature to discard some of them.

Considering the encouraging results previously
obtained by applying the Fuzzy-Prototypical Knowledge
Discovery (FPKD) process and the Fuzzy Deformable
Prototypes for the construction of prediction models
applied to different domains [22][13][14], we decided to
use them for our purpose. For the shake of brevity we will
not explain in-depth all the steps of the prediction process,
although further details about them can be found in [21].

In our case, the main goals of the prediction process
are: firstly, the automatic search and extraction of fuzzy
prototypes to characterize the UML statechart diagrams
across their understandability, expressed as the structural
complexity and size of the diagrams. This will be done
using the Fuzzy Prototypical Knowledge Discovery

(FPKD) process; and secondly, the obtainance of a
prediction model of the understandability time of the
UML statechart diagrams, by means of the deformation of
the previously discovered fuzzy prototypes.

The FPKD is an extension of the classic KDD [10]
process that presents as novelties the incorporation of
knowledge in different points by means of the user or the
expert decisions and a result prepared to generate some
conceptual prototypes called Fuzzy Deformable
Prototypes, based on the idea of Fuzzy Prototypical
Categories [21][27]. The use of fuzzy logic let us get
these results in a more understandable and useful way for
their later use in the prediction process. We can evaluate
new situations from such prototypes, establish predictions
for real situations and also make decisions from these
predictions. Some other techniques, such as fuzzy
clustering and aggregation functions [10], are also used,
making easier the generation of structured, significant and
easily updatable models.

This work is organized as follows: in section 2, the
controlled experiment and its replication are presented. In
section 3 we describe the different steps followed until
getting the prediction model, which consist of the FPKD
process, the proper prediction process and the validation
of the prediction model. Finally, in section 4 we present
the main conclusions and the future research lines
emerged from this work.

2. Description of the data sources

In this section we will briefly describe a controlled
experiment and its replication. They were carried out
taking into account some suggestions provided by experts
in Empirical Software Engineering [7][17][23][26].
Futher details of the exepriment and its repliaction can be
found in [20].

2.1. First experiment

Using the GQM [2] template for goal definition, the goal
of the experiment is detailed in Table 2.

Table 2. Goal of the experiment.

Analyze Structural complexity and size metrics for UML statechart diagrams
For the purpose of Evaluating
With respect to the capability of being used as indicators of the understandability of UML statechart diagrams
From the point of view of researchers

In the context of Undergraduate students of Computer Science and Software Engineering teachers of the Computer
Science Department at the University of Castilla-La Mancha

The experiment consisted of 20 UML statechart

diagrams related to different universes of discourse but
easy enough to be understood by each of the subjects (see
an example in Appendix A). Each diagram had a test
enclosed, which included a questionnaire in order to
evaluate whether the subjects had really understood the
content of the UML statechart diagrams. Each
questionnaire contained four questions, each of these
conceptually similar and written in the same order. Each
subject had to write down the time he/she started and
finished answering the questionnaire. The difference
between these two values, expressed in seconds, is what
we called ‘understandability time’ . The subjects were
given the material and they have to solve tests alone. We
allowed them one week to return the experiment solved.

2.2. Experiment replication

The main differences between the experiment and its
replication are:
• The subjects were twenty students enrolled in the

third-year of Computer Science. Therefore, the
subjects experience was lower than in the first
experiment.

• They had to complete the tests alone and in no more
than two hours. Any doubt could be solved by the
person that coordinated the experiment, what
contributed to control the plagiarism.

3. Building a prediction model for the
understandability time of UML statechart
diagrams

In order to build the prediction model, we carried out two
main processes. First, a FPKD process, which consists of
several steps: data transformation; obtainance of the
prototypes using clustering techniques; parametric
definition of the prototypes; fuzzy representation of the
prototypes (using the data obteined in the fisrt
experiment). Then, we carried out a Prediction process,
which consists of the ‘deformation’ of the fuzzy
prototypes for predicting the understandability time of
UML statechart diagrams and the Validation process
(using the data of the replication).

Next, we will describe how we carried out each of
these steps.

3.1. Data transformation

Firstly, it was necessary to transform the data so that they
were valid for the FPKD process. On one hand, we
obtained the table with the metric values for statechart.
On the other hand, we obtained the understandability time
for each diagram and subject. From these times, we
obtained the minimum (MinUT), average (AvgUT) and
maximum (MaxUT) understandability time of each
diagram (see Table 3).

Table 3. Time obtained (in seconds) in the transformation process.

Diagram AvgUT MinUT MaxUT Diagram AvgUT MinUT MaxUT
1 110.00 15 420 11 153.16 85 360
2 95.00 30 170 12 86.37 50 180
3 191.94 61 360 13 88.05 35 300
4 163.39 69 405 14 136.05 44 360
5 129.50 30 215 15 152.22 85 420
6 124.56 58 310 16 140.05 50 300
7 154.05 72 300 17 108.63 59 195
8 140.00 50 360 18 154.89 65 265
9 131.79 70 300 19 84.26 40 180

10 85.21 50 180 20 85.84 42 140

3.2. Obtainance of the prototypes using
clustering techniques

With the aim of detecting the relationshi ps between the
UML statechart diagrams to be able later to ascertain
whether they have a low, medium or high

understandability time, we will carry out a hierarchical
clustering process, in the way of Repertory Grids’s
technique [3].

The diagrams were grouped in three prototypes
according to the values of the metrics that reflect their
structural complexity and size (see Table 4).

3.3. Parametric definition of the prototypes
Considering the data prototypes found in the previous
section and their values of the understandability time

shown in Table 3, we obtained the parametric definition of
the prototypes, as Table 5 shows.

3.4. Fuzzy representation of the prototypes

The three prototypes were represented as ‘fuzzy numbers’,
which would allow us to obtain a degree of membership
(between 0 and 1) of a new statechart diagram with each
of the prototypes. To use triangular fuzzy numbers it is
only necessary to know their centre and the size of the
base of the triangle (named Centre, a and b in Table 6).

Table 4. Diagrams grouped in prototypes

Prototypes Diagrams
Low Understandability Time 10,13,19
Medium Understandability Time 1,2,4,5,8,9,12,14,16
High Understandability Time 3,6,7,11,15,17,18,20

Table 5. Parametric definition of the prototypes

H: High Underst. Time M: Medium Underst. Time L: Low Underst. Time
Avergae 2 min. 15 sec. Average 2 min. 5 sec. Average 1 min. 25 sec.
Maximum 7 min. Maximum 7 min. Maximum 6 min.
Minimum 42 sec. Minimum 15 sec. Minimum 35 sec.

Table 6. Fuzzy definition of the prototypes

Prototypes Diagrams a Centre B
Low Understandability Time 10,13,19 0 0.08 0.74

Medium Understandability Time 1,2,4,5,8,9,12,14,16 0 0.26 0.92
High Understandability Time 3,6,7,11,15,17,18,20 0 0.34 1

The formal definition of the prototypes as fuzzy

numbers is obtained by means of a normalization process,

carried out in the following way
minmax

min'

xx
xx

x n
n −

−
= , and

the aggregation by means of average of the data
corresponding to the metric values.

3.5. Deformation of the fuzzy prototypes to
predict the understandability time of UML
statechart diagrams

In this section we will show how to predict the
understandability time for a new statechart diagram. We
use as example the diagram 16 used in the experiment
(showed in Appendix A)

The process is as follows:
1. Normalization of the values measured by means of the

indexes of normalization associated with the obtained
prediction model. The same formula is used as in the
definition of the fuzzy numbers and with the same
coefficients of minimum and maximum. In this way we
obtained the values shown in Table 7.
2. Calculate the average of the previously normalized

values (this value is called X). X=0.53.

3. From X, we obtain the degrees of membership to the
prototypes represented by means of the fuzzy
numbers as follows:

pipi

pi
pipi acentre

aX
centreX

−

−
=⇒> µ

pipi

pi
pipi centrec

Xc
centreX

−

−
=⇒>= µ

The results for the diagram 16 are shown in Table 8.
4. To obtain the predicted value of the

understandability time for a new statechart diagram,
the fuzzy prototypes are ‘deformed’ to consider the
affinity degree with all the prototypes. Applying the
concept of Fuzzy Deformable Prototypes defined in
[21], the characterization of the proposed new
statechart diagram can be described by the following
linear combination:

|)...(|)...(11 ninreal vvpwwC ∑= µ
Where:
Creal Real case proposed.
(w1... wn) Parameters that describe the real case

proposed.

µpi Degree of membership with the non-zero Fuzzy
Deformable Prototypes.

(v1... vn) Parameters of these Fuzzy Deformable
Prototypes.

For the diagram 16 the predicted value is shown in
Table 9.

The result of applying the prototype deformation to
every diagram is shown in Table 10.

Table 7. Metric values for the diagram 16.

 NEntryA NExitA NA NSS NCS NT NE NG CC
Values 0 0 5 9 0 21 22 1 16

Normalized 0 0 1 0.7 0 1 0.95 0.3 1

Table 8. Value of the affinities of the diagram 16 with the prototypes.

Prototypes Affinities
Low Understandability Time 0

Medium Understandability Time 0.591

High Understandability Time 0.712

Table 9. Predicted value for the diagram 162.

Average 2 min. 5 sec. 2 min. 15 sec. 2 min. 2 sec.
Maximum 7 min. 7 min. 7 min. 5 sec.
Minimum

0.591 / 2
15 sec.

+ 0.712
42 sec.

=
34 sec.

Table 10. Predicted values for each UML statechart diagrams.

DIAGRAM X Aff(B) Aff (M) Aff (A) Estimated value Real value MRE
1 0.15 0.894 0.577 0.441 116.38 110.00 0.058
2 0.14 0.909 0.538 0.412 114.925 95.00 0.210
3 0.18 0.848 0.692 0.529 120.52 191.94 0.372
4 0.16 0.879 0.615 0.471 117.765 163.39 0.279
5 0.24 0.758 0.923 0.706 162.75 129.50 0.257
6 0.41 0.5 0.773 0.894 156.41 124.56 0.256
7 0.23 0.773 0.885 0.676 158.9375 154.05 0.032
8 0.34 0.606 0.879 1 177.875 140.00 0.271
9 0.23 0.773 0.885 0.676 158.9375 131.79 0.206

10 0.11 0.955 0.423 0.324 110.785 85.21 0.300
11 0.34 0.606 0.879 1 177.875 153.16 0.161
12 0.12 0.939 0.462 0.353 112.155 86.37 0.299
13 0.06 0.75 0.231 0.176 79.92 88.05 0.092
14 0.1 0.97 0.385 0.294 109.4 136.05 0.196
15 0.39 0.53 0.803 0.924 162.485 152.22 0.067
16 0.53 0.318 0.591 0.712 122.205 140.05 0.127
17 0.18 0.848 0.692 0.529 120.52 108.63 0.109
18 0.51 0.348 0.621 0.742 125.555 154.89 0.189
19 0.05 0.625 0.192 0.147 66.565 84.26 0.210
20 0.16 0.879 0.615 0.471 117.765 85.84 0.372

2 In this case, following some recommendations given by the experts, as the sum of the membership degrees is greater than 1, we di-

vided the membership degree of the second most similar prototype by two.

3.6. Validation of the prediction model

We based on the most commonly used techniques [11] to
evaluate the accuracy of our prediction model, MMRE,
MdMRE and Pred(25%).

The values of MRE obtained for each diagram are
shown in Table 10. In this experiment, the value for

MMRE and MdMRE for is 0.20. The value obtained for
Pred(25%) is a 70%, what indicates that a 75% of the
obtained values are at least 70% accurate.

In Figure 1 are shown the predicted and real average
values for the understandability time of each statechart
diagram of the experiment.

0

50

100
150

200

250

1 4 7 10 13 16 19

Real

Prediction

Figure 1. Predicted values vs. real values

4. Conclusions

The main contribution of this work is a prediction

model for he Understandability Time of UML statecharts
diagrams. This model was built from some metrics for the
structural complexity and size of UML statechart
diagrams using two fuzzy logic-based techniques: the
Fuzzy Prototypical Knowledge Discovery (FKPD) process
and the Fuzzy Deformable Prototypes. The data used to
build the model was obtained through a controlled
experiment. Moreover, the model was validated usin data
obtained in a replication of the experiment. Through the
validation, we reached the conclusion that – in a certain
way- it is a good model, since a 75% of the
understandability time estimated values are at least 70%
accurate.

Although the results are encouraging, we are aware that
we must improve our study in two ways: with respect to
the data used for obtaining the prediction model and with
respect to the technique applied for building the prediction
model.

For that, on one hand we have to replicate the
experiment with professionals and examine the usefulness
of the metrics in real projects. Related to the prediction
model, there are also some aspects to improve. Using
algorithms such as Fuzzy C-Means [4], Fuzzy Kohonen
Networks [5] or soft clustering algorithms in general,
would allow us to raise the power of problems resolution.
These algorithms can make the clustering process and the
model construction to be done at once, deciding the
number of prototypes before being carried out. Moreover,
these algorithms allow a better manipulation of great
volume of data.

Acknowledgements

This research is part of the MESSENGER project (PCC-
03-003-1) financed by “Consejería de Ciencia y
Tecnología de la Junta de Comunidades de Castilla-La
Mancha (Spain)” and the CALIPO project supported by
“Dirección General de Investigación del Ministerio de
Ciencia y Tecnologia (Spain)” (TIC2003-07804-C05-03).

References

[1] Atkinson C. and Kühne T. (2003). “Model-Driven

Development: A Metamodeling Foundation”. IEEE Software
20(5), 36- 41.

[2] Basili, V. R., Caldiera, G. y Rombach, H. D. (1994). Goal
Question Metric Paradigm. Encyclopedia of Software
Engineering, vol. 1. John Wiley & Sons, 528­532.

[3] Bell R. (1990). “Analytic Issues in the Use of Repertory
Grid Technique”. Advances in Personal Construct
Psychology 1, pp. 25-48.

[4] Bezdek J., Hathaway R., Sabin M., Tucker W. (1987).
“Convergence Theory for Fuzzy c-Means Counterexamples
and Repairs”. IEEE Trans Syst., Man and Cybern. SMC-17
(5), pp. 873 - 877.

[5] Bezdek J., Tsao E., Pal N. (1992). “Fuzzy Kohonen
Clustering Net-works”. IEEE International Conference on
Fuzzy Systems. San Diego, pp. 1035-1043.

[6] Briand, L., Morasca, S., Basili, V. (1996) “Property-based
software engineering measurement”. IEEE Transactions on
Software Engineering, 22 (1) pp. 68-85

[7] Briand L., Arisholm S., Counsell F., Houdek F., Thévenod-
Fosse P. (1999b). “Empirical Studies of Object-Oriented
Artifacts, Methods, and Processes: State of the Art and Future
Directions”. Empirical Software Engineering, 4(4), pp. 387-
404.

[8] Briand L., Bunse C., Daly J. (2001). “A Controlled
Experiment for evaluating Quality Guidelines on the
Maintainability of Object-Oriented Designs”. IEEE
Transactions on Software Engineering, 27(6), pp. 513-530.

[9] Brito e Abreu F., Zuse H., Sahraoui H. , Melo W. (1999).
“Quantitative Approaches in Object-Oriented Software
Engineering”. ECOOP’99 Workshops, LNCS 1743, A.
Moreira and S. Demeyer (eds). Springer-Verlag. pp. 326-337.

[10] Castro J., Trillas E., Zurita J. (1998). “Non-monotonic
Fuzzy Reasoning”. Fuzzy Sets and Systems 94, North
Holland, pp. 217 - 225.

[11] Conte S., Dunsmore H., Shen V. (1986). Software
Engineering Metrics. Benjamin-Cummings Publishing Co.,
Inc., USA.

[12] Fayyad U., Piatetsky-Shapiro G., Smyth P. (1996). “The
KDD Process for Extracting Useful Knowledge from
Volumes of Data”. Communications of the ACM, 39(11), pp.
27 - 34.

[13] Genero M., Olivas J., Piattini M., Romero F. (2001). “Using
metrics to predict OO information systems maintainability”,
CAISE 2001, Lecture Notes in Computer Science, 2068,
Interlaken, Switzerland, 388-401.

[14] Genero M., Piattini M., Calero C. (2002). “An study to
validate metrics for class diagrams”. Jornadas
Iberoamericanas de Ingeniería de Requisitos y Ambientes de
Software (IDEAS´2002), La Habana (Cuba), pp. 226-235.

[15] Genero M., Piattini M. and Calero M. (Eds.) Metrics For
Software Conceptual Models. Imperial College Press, UK,
2004.

[16] Harrison R., Counsell S., Nithi R. (2000). “Experimental
Assessment of the Effect of Inheritance on the Maintainability
of Object-Oriented Systems ”, The Journal of Systems and
Software, 52, 173-179.

[17] Kitchenham B., Pflegger S., Pickard L., Jones P., Hoaglin
D., El-Emam K. y Rosenberg J. (2002). “Preliminary
Guidelines for Empirical Research in Software Engineering”.
IEEE Transactions of Software Engineering 28(8), pp. 721-
734.

[18] McCabe, T. (1976). “A Complexity Measure”. IEEE
Transactions on Software Engineering. Vol. 2. Nº4, pp. 308-
320.

[19] MDA- The OMG Model Driven Architecture (2002).
Available: http://www.omg.org./mda/, August 1st, 2002.

[20] Miranda D., Genero M., Piattini M. (2003). “Empirical
validation of metrics for UML statechart diagrams”. Fifth
International Conference on Enterprise Information Systems
(ICEIS 03), 1, pp. 87-95.

[21] Olivas J. (2000). Contribución al Estudio Experimenta l de
la Predicción basada en Categorías Deformables Borrosas,
Tesis Doctoral, Universidad de Castilla La Mancha, España.

[22] Olivas J., Romero F. (2000). “FPKD. Fuzzy Prototypical
Knowledge Discovery. Application to Forest Fire
Prediction”. Proceedings of the SEKE'2000 , Knowledge
Systems Institute, Chicago, Ill. USA, pp. 47 - 54.

[23] Perry D., Porter A., Votta L. (2000). “Empirical Studies of
Software Engineering: A Roadmap”. Future of Software
Engineering. Ed:Anthony Finkelstein, ACM, pp. 345-355.

[24] Poels, G. and Dedene, G. (2000). “Measures for Assessing
Dynamic Complexity Aspects of Object-Oriented Conceptual
Schemes”. Proceedings of 19th International Conference on
Conceptual Modelling (ER 2000), pp. 499-512.

[25] Schneidewind N. (2002). “Body of Knowledge for Software
Quality Measurement”. IEEE Computer 35(2), pp. 77-83.

[26] Wohlin C., Runeson P., Höst M., Ohlson M., Regnell B.,
Wesslén A. (2000). Experimentation in Software
Engineering: An Introduction, Kluwer Academic Publishers.

[27] Zadeh, L. A. (1982). “A note on prototype set theory and
fuzzy sets”. Cognition 12, pp. 291- 297.

Appendix A

In this appendix we will show, as example, one of the test
used in the experiment, corresponding to the diagram 16.

DIAGRAM 16: MAKING A TELEPHONE CALL 2

IDDLE

GET TONE
do/ Dial tone

Hang up

OCCUPIED
do/ Start occupied tone

DIALING

Push digit (n)

CONNECTING
do/ Search connection

ERROR MESSAGE

do/ Emit message RINGING
do/ Emit ring

CONNECTED
on New incoming call / Emit ring

DISCONNECTED

Take down

Take down

Occupied speaker

On line

Take down

Exchange calls
[Two connections = TRUE]

Answer / Connect Line

Take down

Called phone takes down / Disconnect line

Take down / Disconnect line

Make new call

Time exhausted

Push digit (n)

Take down

Take down
[Time exhausted]

[Valid numb er]

[Invalid number]

End of message

Take down

TIME NOW: ________

Answer the following questions:

1. If you get from CONNECTED to IDDLE, which event has occurred previously? TAKE DOWN
2. If you are CONNECTED and the event Occupied speaker occurs, which state do you get to?

 OCCUPIED
3. Which events and/or conditions will have occurred at least and in which order for getting form IDDLE to RINGING?

(1) Hang up (2) Push digit(n) (3) [Valid number] (4) On line

4. Starting from ERROR MESSAGE, which state will you get if the following sequence of events and conditions occurs? (1)
Take down (2) Hang up (3) Push digit(n) and (4) [Time exhausted]. OCCUPIED

TIME NOW: ________

