
A Security Requirements Approach
for Web Systems?

Stefan Wagner, Daniel Mendez Fernandez, Shareeful Islam, and Klaus
Lochmann

Technische Universität München
Software & Systems Engineering

{wagnerst,mendezfe,islam,lochmann}@in.tum.de

Abstract. In order to avoid the high impacts of software vulnerabilities,
it is necessary to specify security requirements early in the development
on a detailed level. Current approaches for security requirements engi-
neering give insufficient support for refining high-level requirements to a
concrete and assessable level. Furthermore, reuse mechanisms for these
detailed requirements are missing. This paper proposes a web security
model based on experiences with other quality models that is used in a
security requirements engineering approach. The model provides (1) a
means for refinement and (2) a requirements repository for reuse. The
approach is illustrated with an example involving the Tomcat servlet
container.

1 Introduction

Malicious attacks on software systems are a topic with high public visibility as
average users can be affected. The level of vulnerabilities is still high today. The
CERT1 reports of 6,058 total vulnerabilities for the first 9 months of 2008. These
attacks have a strong financial impact. In last year’s E-Crime Watch Survey2, it
is stated that on average for each company security attacks result in a monetary
loss of $456,700 in 12 months.

Therefore, software security is still a large and important problem in practice.
It not only affects financial aspects but also ethical issues such as privacy. Hence,
it is an important goal in software development to produce secure systems. This
especially holds for web systems that are usually accessible in public networks.
Secure web systems begin with the specification of security requirements. In
order to become effective, they need to be clear and precise so that they are a real
guidance for their implementation. This way, vulnerabilities can be prevented or
at least reduced.
? This work has been supported in part by the German Federal Ministry of Education

and Research (BMBF) in the project QuaMoCo (01 IS 08023B) and the German
Academic Exchange Service (DAAD).

1 http://www.cert.org/stats/vulnerability_remediation.html
2 http://www.csoonline.com/documents/pdfs/e-crime_release_091107.pdf

Problem Despite the importance of high-quality security requirements for web
systems, in practice they are often not well documented or not documented at
all. Quality in general and security in particular are concepts with many facets
and aspects. Hence, formulating precise requirements is difficult and elaborate.

First, there is no methodological guidance for refining high-level security
requirements such as confidentiality or integrity to a concrete and assessable
level. The refinement of security requirements is often complicated by many
reasons such as by unavailable end users. This especially is true for systems that
are distributed within a huge market, as it is the case for many web systems.
Second, it is often unclear how reuse of requirements can be properly integrated
in the development process. It is economically questionable to write detailed
security requirements for each system from scratch.

Contribution The main contribution of this paper is an approach for security
requirements engineering for web systems that mitigates the above mentioned
problems. It uses an explicit and detailed security model as a knowledge repos-
itory for the reuse of requirements and their refinement. This security model
builds on experiences with other quality models and documents in detail what
security means in a given setting. We use the model in the approach to support
two steps in particular: (1) deriving misuse cases based on the modelled attack
patterns and (2) refinement of the high-level misuse cases to assessable, low-level
requirements

Related Work In recent years much work has been done considering security
requirements and related engineering processes. SQUARE [1] and SREP [2] de-
scribe activities to elicit and analyse security requirements. Misuse case driven
approaches also contribute to the security requirements process [3]. Our approach
builds on that and adds an activity-based security model as means for refinement
and reuse. Although there exist many approaches for RE that are specifically
elaborated for web systems [4], approaches that address the elicitation and re-
finement of security requirements are still missing. A similar situation exists with
quality models. There are several interesting approaches involving web quality
models, e.g. [5, 6]. However, none of these considers security explicitly.

2 Web Security Model

Quality models describe in a structured way what quality of software means. We
introduce activity-based quality models and propose the web security instance
that we use in the requirements approach.

2.1 Activity-Based Quality Models

We use the term quality model here in the sense of a quality definition model from
[7], i.e. quality models define what quality is for a software system. However, in

practice this is often reduced to single metrics such as number of defects or high-
level descriptions as given by the ISO 9126 [8]. These existing quality models
have broadly acknowledged problems [9].

We have proposed to use activity-based quality models (ABQM) [10, 11] in
order to address the shortcomings of existing quality models. The idea is to avoid
using high-level “-ilities” for defining quality but to break it down into detailed
facts and their influence on activities performed on and with the system. In
addition to information about the characteristics of a system, the model contains
further important facts about the process, the team and the environment and
their respective influence on activities.

For ABQMs, an explicit meta-model was defined in order to characterise the
quality model elements and their relationships. Four elements of the meta-model
are most important: Entity, ATTRIBUTE, Impact and Activity. An entity can be any
thing, animate or inanimate, that can have an influence on the software’s quality,
e.g. the source code of a method or the involved testers. These entities are charac-
terised by attributes such as STRUCTUREDNESS or CONFORMITY. The combination of
an entity and an attribute is called a fact. We use the notation [Entity | ATTRIBUTE]

for a fact. These facts are assessable either by automatic measurement or by
manual review. If possible, we define applicable metrics for measuring the facts
inside the ABQM. An influence of a fact is then specified by an Impact. The
impact on an Activity can be positive or negative. An activity is anything that
is done with the system. For example, redundant methods (code clones) in the
source code render modifications more difficult and elaborate. This is expressed
in the model as [Method | REDUNDANCY]

−−→ [Modification].
The model does not only contain these impacts of facts on activities but

also the relationships among these. Facts as well as activities are organised in
hierarchies. A top-level activity Activity has sub-activities such as Use, Maintenance

or Administration. In realistic quality models, these are then further refined.
Having defined all these entries in the ABQM, we can specify which activities

we want to support and which influencing facts need to be considered. In terms
of the above example, if we want to support the activity Modification, we know
that we need to inspect the redundancy of methods.

2.2 The Web Security Instance

For handling web security requirements, we need to create a web security in-
stance of the ABQM. Most important in this instance is to add attacks to the
activity tree. These are activities that need to be negatively influenced. First,
we have to differentiate between anticipated attacks and unanticipated attacks.
A major problem in software security is that it is impossible to know all attacks
that the system will be exposed to. This is the case because new attacks are
developed every day. Hence, to assure quality, we need to employ two strategies:
(1) prepare the system against anticipated attacks and (2) harden the system
in general to avoid other vulnerabilities. For the classification of the attacks,
there are several sources possible. We rely on the open community effort Com-
mon Attack Pattern Enumeration and Classification (CAPEC) [12] that is led

by the U.S. Department of Homeland Security. In the CAPEC, existing attack
patterns are collected and classified. The attacks are organised in a hierarchy
that is adapted in the activities tree (see Fig. 1).

Unanticipated

Attack

Anticipated

Attack

Abuse of

Functionality

Attack

Data Leakage

Attack

Data Structure

Attack

Exploitation of

Authentication

Exploitation of

Privilege/Trust

Injection Physical Attack
Probabilistic

Techniques

Resource

Depletion

Resource

Manipulation

Spoofing
Time and State

Attack
Data Attack Exploitation

Resource

Attack

Fig. 1. The upper layers of the attack sub-tree of the activity tree

The creation of the facts tree is far more complicated. The facts tree needs
to contain the available knowledge about characteristics of the system, its envi-
ronment and the organisation that influence the described attacks. We employed
various sources for collecting this knowledge including the ISO/IEC 27001 [13],
the web guidelines3, OWASP [14], and the Sun Secure Coding Guidelines for
the Java Programming Language [15]. However, two main sources were used be-
cause they constitute large community efforts and hence provide consolidated
knowledge: specific parts of the Common Criteria (CC) [16] and the Common
Weakness Enumeration (CWE) [17]. The Common Criteria describe require-
ments on a system that should ensure security with a focus on what the system
“shall do”. The CWE looks at security from the other direction and describes
reoccurring weaknesses in software systems that lead to vulnerabilities that are
exploited by attacks. Therefore, these two sources combined give a strong basis
for the facts tree.

We cannot describe the incorporation of the sources in all details in this paper
but we give some examples on how knowledge from the sources has been modelled
in our security model. For this, we use a sub-tree of the fact tree for the system
as depicted in Fig. 2. The system consists of Data and Functionality. Furthermore,
it has Dynamics and a Static Structure. These entities have then again children.
For example, data can be a Cookie or an HTTP Request. Interesting functionality
can be Cryptographic Support or File Handling.

Many of the entries in the quality model that have their origin in the Common
Criteria are modelled as a part of Functionality because they mainly describe be-
havioural aspects that nevertheless are important for security. An example that
is shown in Fig. 2 is the cryptographic support of the system. Following the
CC, this can be decomposed into Cryptographic Key Management and Cryptographic

Operation. A further part of Cryptographic Key Management is the Cryptographic Key

Generation. The CC defines a requirement for that key generation that it shall be

3 http://www.webguidelines.nl/

System

Data

Cryptographic

Support
File Handling

Ressource

Allocation
Web Page

Static StructureFunctionality Dynamics

Cookie HTTP Request

Fig. 2. Example entries of the system sub-tree from the fact tree

in accordance with a specified algorithm and specified key sizes. In the model, we
express that by using the attribute APPROPRIATENESS for Cryptographic Key Genera-

tion. The resulting fact [Cryptographic Key Generation | APPROPRIATENESS] is textually
described by “The system generates cryptographic keys in accordance with a
specified cryptographic key generation algorithm and specified cryptographic
key sizes that meet a specified list of standards.” Unfortunately, the CC does
not contain any description of impacts. This would make the standard more use-
ful because the motivation to use these requirements would be higher. Hence, we
complete the information using other sources. In this case, the CAPEC contains
possible solutions and mitigations in the description of the cryptanalysis attack
that includes the recommendation to use proven cryptographic algorithms with
recommended key sizes. Therefore, we include the corresponding negative impact
of [Cryptographic Key Generation | APPROPRIATENESS] on Cryptanalysis.

In contrast to the CC, the Common Weakness Enumeration mainly provides
characteristics of the system and especially the kind of code that should be
avoided. We include these characteristics into the model in this negative way
with a positive influence on the attacks, i.e. making attacks easier. Another
possibility is to reformulate the weaknesses as strength that are needed with
negative influence on attacks. We used both possibilities depending on which
option was more straightforward to model.

Several weaknesses in the CWE are not aiming at specific attacks but describe
characteristics that are indicators for possible vulnerabilities. We model these
as facts that have an impact on unanticipated attacks. An example from the
CWE that is in our security model is dead code. Several parts of the code can
be superfluous such as variables, methods or complete classes. For a variable, we
can model that as a positive impact of [Variable | SUPERFLUOUSNESS] on Unanticipated

Attack.

3 Security Requirements Approach

A requirements engineering (RE) process in general aims at systematically and
effectively defining requirements that are aligned with the needs of all relevant
stakeholders. According to [18] a RE process consists of the activities elicitation,
analysis (refining requirements over several stages) and finally validation. What
specific fine-grained techniques and approaches are used for each of these activ-
ities strongly depends on the application domain. We proposed a requirements

approach that makes use of the ABQM to reuse and refine requirements in [19].
Figure 3 illustrates the instance of the approach for the application domain of
security requirements for web systems. The figure gives an overview of the ac-
tivities, while the tasks within each of the activities are chosen according to the
least common denominator of known security-specific RE approaches. We refer
in particular to the Security Requirements Engineering Process (SREP) [2], the
Security Quality Requirements Engineering Process (SQUARE) [1] and deriva-
tions of these approaches that integrate misuse cases [3].

Artefacts

Activities

Activity-based Quality Model

Activities
(Attacks)

Entities
Impact (+/-)

Attributes

Derive

Legend:

- Elicit Goals, Services,
Assets & Policies

- Derive Security Goals

- Identify Use Cases
- Identify Threats, Vulnerabilities &

Develop Misuse Cases
- Derive quantified Security Requirements

- Control Requirements
- Update ABQM

Update
Control

Requirements

Elicitation Analysis Validation

Fig. 3. Integration of the activity-based security model into an RE process

Elicitation During the requirements elicitation high level business requirements
and/or market needs are collected. These represent high-level, initially stated,
requirements. In particular, business requirements encompass (1) goals that have
to be achieved by the final product, (2) services and assets that are offered and
maintained by the product and (3) policies that might restrict its functionality.
This information provides a sufficient basis for deriving security goals.

Analysis The requirements analysis aims at refining the business requirements
to measurable ones. The first step of this refinement procedure consists of the
identification of use cases. They represent the system’s external behaviour by
describing scenarios — specific sequences of interaction between users and the
system. Because for security requirements also undesired use is relevant, misuse
cases are derived. A misuse case can be seen as the inverse of a use case that
shows an undesirable sequence of interactions, i.e. they describe how a specific
attack can be performed.

The last step within analysis consists in deriving more concrete security re-
quirements. These requirements demand specific properties (attributes) of the
system and its environment that are meant to prevent the attack possibilities
described within the misuse cases. For example, if a misuse case describes a
specific attack that embeds malicious code into the system, derived security re-
quirements could demand specific properties of sensitive data that is transmitted
in encrypted connections.

However, as already described, a major challenge consists not only in identi-
fying possible misuse cases but also in deriving security requirements from the

scenarios that address the prevention of such attacks. The quality model there-
fore serves as a knowledge repository that supports the reuse of requirements for
the purpose of identifying and refining them. The activities within the quality
model correspond to the scenarios (use cases and misuse cases) that are elicited
and refined. The entities correspond to the system elements that are constrained
by the requirements in terms of demanding specific properties of these elements,
while the attributes of the entities correspond to such properties.

In this sense, the ABQM can be used to identify misuse cases by harvesting
relevant attack scenarios from the activity tree. To derive quantified security re-
quirements from these misuse cases, the ABQM is also used. As it also defines the
relations between the scenarios and corresponding (e.g. technological) entities of
a system, we only need to follow the impact of an activity to the corresponding
entities to derive detailed requirements. These detailed requirements constrain
the system’s entities in a measurable way. In this case measurable does not nec-
essarily mean automatically measurable. Also manual assessments like reviews
and inspections can be used to evaluate quality requirements. This tackles the
problem that requirements engineers do not need to have all technological possi-
bilities in mind for each scenario. For example, attack scenarios that exclusively
refer to web technologies can be grouped together [2]. As a whole, the analy-
sis process based on the ABQM supports sufficient completeness of the quality
requirements as this repository can be taken as the backbone of requirements
analysis.

Validation The validation aims at proving and controlling requirements accord-
ing to chosen (quality) criteria. In particular, the goal is to avoid and resolve
conflicted, under-specified, unfeasible, incomplete and incorrect requirements.
To find and correct such requirements, the ABQM can be used. For example,
two requirements are conflicted (make contrary assertions), if they constrain the
same system entity in a different way. Also under-specified requirements can be
detected. If a requirement is under-specified, it is impossible to find an impact to
a certain system entity. Also the correctness of the requirements can be tackled,
because all detailed requirements are derived from business requirements and
can be traced back to them.

Finally, requirements validation also includes updating the ABQM with re-
quirements that are elaborated in addition to ones that are already stored within
the ABQM. This update consists of two steps. First, the activity tree undergoes
an update by inserting new scenarios, such as misuse cases that are not yet
addressed by the activity tree. Second, the entities are inserted by adding the
entities that are constrained with specific quality attributes.

4 Example

To further illustrate our approach, we use the servlet container Tomcat 6.0 4 and
develop security requirements for it. Tomcat is the reference implementation of
4 http://tomcat.apache.org/

the Java servlet and JSP specification and provides support to deliver dynam-
ically assembled HTTP responses based on an HTTP request. We follow the
RE process introduced in the previous section, while describing only exemplary
requirements for reasons of space limitations.

Elicitation We concentrate on the most important high level goal for Tomat:
The system allows the user to send any request and get a response. From this
goal the elementary services request and response are derived in terms of that a
server has to respond to every possible sequences of HTTP requests from a client.
Several critical assets are possible but we assume that only sensitive information
is important in our example. Security goals are now identified to protect each
of the identified services and assets and to attain the defined goals. The derived
security goals are: (a) The system services shall be available for the subscript
user and (b) the system shall ensure privacy, integrity and availability of the
sensitive data communicating among the involved legitimate parties.

Analysis Based on the elicited business requirements we examine the threats
and vulnerabilities from our model. We use the identified services as a basis for
identifying the relevant use case (request & response). There are several pos-
sible anticipated attacks for this use case that violate the confidentiality and
integrity of sensitive information. For instance, injection attacks that cause the
unauthorised access in an established session so that attackers can view, cap-
ture and modify any data that is communicated within this session. Therefore,
“attack by injection” is considered as a misuse case. Figure 4 illustrates how
from the ABQM misuse cases are derived. The left side of the figure represents
the attack activities contained in the model, the right side the identified misuse
cases that set the attacks in context to the relevant use cases. In the model, this
attack is influenced by the fact [Directive | SANITATION] and [Processing | SANITATION].
Hence, the requirements have to explicitly include that user input of directives
and processing of data needs to be validated before it is used. In a similar way,
we analyse the other attacks such as resource attacks with their related facts.

Derive

 Activity Tree of the ABQM (Attacks Activities) Misuse Cases (Attack Scenarios)

Anticipated

Attack

Activity

Injection
Physical

Attack
Exploitation

Spoof

user

Script

Injection
Format String

Injection
……...

Parameter

Injection

……….

SQL

Injection

Chosen

Threats

Legend:

Embedding Scripts in

Nonscript Elements

Resource

Depletion

Resource

Manipulation

Flooding Allocation

Resource

attack

……….

Embedding Scripts in

HTTP Headers

Embedding Scripts in

HTTP Query Strings ……….

Fig. 4. Using the ABQM for deriving misuse cases

At this stage security requirements are specified based on the identified at-
tacks and related facts from the model. These security requirements are detailed
enough to be able to assess their fulfilment directly in the code, e.g. by reviews.
The elicited security requirements can be textually specified like in the following:

– The software shall sanitise user-controllable input for content before it is
prepared in output that is used as a web page. Unsanitized special elements
that have control implications in web pages, such as HTML tags or mouse
events, are interpreted as control characters that execute in violation of the
client’s trust in the application or system. This weakness usually enables
cross-site scripting attacks in web applications.

– The system shall verify user inputs that are assumed to be immutable but
are actually externally controllable, such as a cookie.

Validation As our short list of the above requirements does not contain any
conflicts, the validation is rather simple. However, there are further threats which
are not currently covered in our activity tree. For example, an attacker can have
the opportunity to view or modify the sensitive data by unauthorised physical
means. This needs to be refined without specific guidance from the ABQM but
can then be fed back into it. This way, this new kind of attack is available in the
requirements elicitation for the next project.

5 Conclusions

Because of the importance of software security in web systems, we need to con-
sider security aspects from the very beginning in the requirements engineering
process. The basis of our security requirements approach consists of an activity-
based security model that uses experiences with such models in other areas. The
way of modelling allows to break down security to assessable and partly directly
measurable characteristics of the system, its environment and the organisation.
The activities in the model consist of common attack patterns that need to be
prevented and thereby deliver the means for refining high-level security goals to
such concrete and assessable, but necessarily measurable characteristics. More-
over, the model can also serve as a comprehensive repository that fosters the
reuse of security requirements.

An example was conducted with the Tomcat servlet container. It showed that
the approach is feasible in principle and that there is a potential for preventing
vulnerabilities by specifying more concrete requirements. We plan to perform
industrial case studies with the security model in order to explore the benefits
and limitations of the approach. Finally, the UMD by Donzelli and Basili [20]
will be analysed for a potential extension of our approach because it contains
some additional aspects that might be useful for requirements elicitation.

References

1. Mead, N., Steheny, T.: Security quality requirement engineering methodology. In:
Proc. Workshop on Software Engineering for Secure Systems (SESS ’05). (2005)

2. Mellado, D., Medina, E., Piattini, M.: Acommon criteria based security require-
ments engineering process for the development of secure information system. Com-
puter standards & interfaces 29 (June 2007) 244–253

3. Sindre, G., Opdahl, A.: Eliciting security requirements with misuse case. Require-
ments Engineering Journal 44(10) (June 2005) 34–44

4. Koch, N., Escalona, J.: Requirements engineering for web applications - a com-
parative study. Journal of Web Engineering 2(3) (2004)

5. Ruiz, J., Calero, C., Piattini, M.: A Three Dimensional Web Quality Model. Vol-
ume 2722 of LNCS. Springer-Verlag (2003)

6. Malak, G., Badri, L., Badri, M., Sahraoui, H.: Towards a Multidimensional Model
for Web-Based Applications Quality Assessment. Volume 3182 of LNCS. Springer-
Verlag (2004)

7. Deissenboeck, F., Juergens, E., Lochmann, K., Wagner, S.: Software quality mod-
els: Purposes, usage scenarios and requirements. In: Proc. 7th International Work-
shop on Software Quality (WoSQ ’09), IEEE Computer Society (2009)

8. : ISO 9126: Product Quality – Part 1: Quality Model (2003)
9. Kitchenham, B., Pfleeger, S.L.: Software quality: The elusive target. IEEE Softw.

13(1) (1996) 12–21
10. Deissenboeck, F., Wagner, S., Pizka, M., Teuchert, S., Girard, J.F.: An activity-

based quality model for maintainability. In: Proc. 23rd International Conference
on Software Maintenance (ICSM ’07), IEEE Computer Society (2007) 184–193

11. Winter, S., Wagner, S., Deissenboeck, F.: A comprehensive model of usability.
In: Proc. Engineering Interactive Systems 2007 (EIS ’07). Volume 4940 of LNCS.,
Springer (2008)

12. Homeland Security: Common attack pattern enumeration and classification
(CAPEC). Available Online at http://capec.mitre.org/. Accessed in October 2008

13. : ISO/IEC 27001: Information technology – Security techniques – Information
security management systems – Requirements (2005)

14. Wiesmann, A., van der Stock, A., Curphey, M., Stirbei, R., eds.: A Guide to
Building Secure Web Applications and Web Services. OWASP (2005)

15. Sun Microsystems: Secure coding guidelines for the java programming language,
version 2.0. Available Online at http://java.sun.com/security/seccodeguide.

html

16. : Common criteria for information technology security evaluation, version 3.1.
Available Online at http://www.commoncriteriaportal.org/

17. Homeland Security: Common weakness enumeration (CWE). Available Online at
http://cwe.mitre.org/. Accessed in October 2008

18. Wiegers, K.E.: Software Requirements. Microsoft Press, Redmond, WA, USA
(2003)

19. Wagner, S., Deissenboeck, F., Winter, S.: Managing quality requirements using
activity-based quality models. In: WoSQ ’08: Proceedings of the 6th international
workshop on Software quality, New York, NY, USA, ACM (2008) 29–34

20. Donzelli, P., Basili, V.: A practical framework for eliciting and modeling system
dependability requirements: Experience from the NASA high dependability com-
puting project. The Journal of Systems and Software 79 (2006) 107–119

